N. P. Rasulov, I. I. Safarov, R. T. Muxitdinov


Tekislikdagi geometrik shakllarning yuzalarini hisoblash



Yüklə 0,98 Mb.
səhifə46/60
tarix02.01.2022
ölçüsü0,98 Mb.
#50951
1   ...   42   43   44   45   46   47   48   49   ...   60
N. P. Rasulov, I. I. Safarov, R. T. Muxitdinov

Tekislikdagi geometrik shakllarning yuzalarini hisoblash. Bizga ma’lumki, y=f(x)≥0 funksiya grafigi, х=а va х=b vertikal to‘g‘ri chiziqlar hamda y=0 , ya’ni OX koordinata o‘qi bilan chegaralangan egri chiziqli trapetsiyaning yuzasi aniq integral orqali

(1)

formula bilan hisoblanadi. Bu formulani umumiyroq hollarda qaraymiz.



  • Agar [а,b] kesmada f(x)0 bo‘lsa, unda tegishli egri chiziqli trapetsiya OX o‘qidan pastda joylashgan va aniq integral qiymati manfiy son bo‘ladi. Shu sababli bu holda egri chiziqli trapetsiya yuzasi

(2)

formula orqali topiladi.

Masalan, x[π/2,π] holda y=cosx≤0 va bunda hosil bo‘ladigan egri chiziqli trapetsiya yuzasi

.


  • Agar [а,b] kesmada f(x) ishorasi o‘zgaruvchan funksiya bo‘lsa, unda tegishli egri chiziqli trapetsiyaning bir qismi OX o‘qidan yuqorida , bir qismi esa pastda joylashgan bo‘ladi (keyingi betdagi 76-rasmga qarang).

Bu holda hosil bo‘ladigan egri chiziqli trapetsiyaning yuzasi (1) va (2) formulalardan foydalanib topiladi va ularni birlashtirib

(3)

ko‘rinishda yozish mumkin.



76-rasm

Masalan, x[0,π] holda y=cosx funksiya [0,π/2) sohada musbat, (π/2,π] sohada esa manfiy qiymatlar qabul etadi. Bunda hosil bo‘ladigan egri chiziqli trapetsiya yuzasi



.

    • у=f(x) vа у=g(x) [f(x)≥g(x)] egri chiziqlar hamda х=ах=b to‘g‘ri chiziqlar bilan chegaralangan geometrik shaklning (77-rasm) S yuzasini hisoblash talab etiladi.

Chizmadan va aniq integralning geometrik ma’nosidan foydalanib, quyidagi tengliklarni yoza olamiz:



. (4)

Masalan, y=x2 va y=x, x=2 va x=4 chiziqlar bilan chegaralangan yassi geometrik shakl yuzasini (4) formuladan foydalanib hisoblaymiz:



.

    • Endi x=φ(t) , y=ψ(t) ( t[α, β]) parametrik tenglama bilan berilgan chiziqdan hosil qilingan egri chiziqli trapetsiya yuzasini hisoblash masalasini qaraymiz. Unda (1) formuladagi aniq integralda x o‘zgaruvchini t o‘zgaruvchi bilan almashtirib, quyidagi formulaga ega bo‘lamiz:

. (5)

Misol sifatida yarim o‘qlari a va b bo‘lgan ellipsning S yuzasini topamiz. Bu ellipsning parametrik tenglamasi x=acost, y=bsint (t[0,2π]) ekanligi bizga ma’lum. Ellipsning simmetrikligidan hamda (5) formuladan foydalanib, uning yuzasi S uchun





formulaga ega bo‘lamiz. Bunda a=b=R desak, unda ellips aylanaga o‘tadi va yuqoridagi formuladan doira yuzasi uchun bizga tanish bo‘lgan SR2 formula kelib chiqadi.




    1. Yüklə 0,98 Mb.

      Dostları ilə paylaş:
1   ...   42   43   44   45   46   47   48   49   ...   60




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin