©
200
6
Nature Publishing Group
116. Sasaki, S. & Iwata, M. Impairment of fast axonal
transport in the proximal axons of anterior horn
neurons in amyotrophic lateral sclerosis. Neurology
47, 535–540 (1996).
117. Sasaki, S., Warita, H., Abe, K. & Iwata, M. Impairment
of axonal transport in the axon hillock and the initial
segment of anterior horn neurons in transgenic mice
with a G93A mutant SOD1 gene. Acta Neuropathol.
(Berl.) 100, 48–56 (2005).
118. Zhang, B., Tu, P., Abtahian, F., Trojanowski, J. Q. &
Lee, V. M. Neurofilaments and orthograde transport
are reduced in ventral root axons of transgenic mice
that express human SOD1 with a G93A mutation.
J. Cell Biol. 139, 1307–1315 (1997).
119. Borchelt, D. R. et al. Axonal transport of mutant
superoxide dismutase 1 and focal axonal
abnormalities in the proximal axons of transgenic
mice. Neurobiol. Dis. 5, 27–35 (1998).
120. Williamson, T. & Cleveland, D. Slowing of axonal
transport is a very early event in the toxicity of ALS-
linked SOD1 mutant to motor neurons. Nature
Neurosci. 1, 50–56 (1999).
121. Murakami, T. et al. Impaired retrograde axonal
transport of adenovirus-mediated E. coli LacZ gene in
the mice carrying mutant SOD1 gene. Neurosci. Lett.
308, 149–152 (2001).
122. Rao, M. V. & Nixon, R. A. Defective neurofilament
transport in mouse models of amyotrophic lateral
sclerosis: a review. Neurochem. Res. 28, 1041–1047
(2003).
123. Ligon L. A. et al. Mutant superoxide dismutase
disrupts cytoplasmic dynein in motor neurons.
Neuroreport 16, 533–536 (2005).
124. Witherden, A. S. et al. An integrated genetic, radiation
hybrid, physical and transcription map of a region of
distal mouse chromosome 12, including an imprinted
locus and the ‘Legs at odd angles’ (Loa) mutation.
Gene 283, 71–82 (2002).
125. Hafezparast, M. et al. Mutations in dynein link motor
neuron degeneration to defects in retrograde
transport. Science 300, 808–812 (2003).
126. LaMonte, B. H. et al. Disruption of dynein/dynactin
inhibits axonal transport in motor neurons causing
late-onset progressive degeneration. Neuron 34,
715–727 (2002).
127. Kieran, D. et al. A mutation in dynein rescues axonal
transport defects and extends the life span of ALS
mice. J. Cell Biol. 169, 561–567 (2005).
128. Teuchert, M. et al. A dynein mutation attenuates
motor neuron degeneration in SOD1(G93A) mice.
Exp. Neurol. 198, 271–274 (2006).
129. Vande Velde, C., Garcia, M. L., Yin, X., Trapp, B. D. &
Cleveland, D. W. The neuroprotective factor Wlds
does not attenuate mutant SOD1-mediated motor
neuron disease. Neuromolecular Med. 5, 193–203
(2004).
130. Pigino, G.
et al. Alzheimer’s presenilin 1 mutations
impair kinesin-based axonal transport. J. Neurosci.
23, 4499–4508 (2003).
131. Morfini, G., Pigino, G., Beffert, U., Busciglio, J. &
Brady, S. T. Fast axonal transport misregulation and
Alzheimer’s disease. Neuromolecular Med. 2, 89–99
(2002).
132. Trushina, E. et al. Mutant huntingtin impairs axonal
trafficking in mammalian neurons
in vivo and
in vitro.
Mol. Cell Biol. 24, 8195–8209 (2004).
133. Schmitt-John, T. et al. Mutation of Vps54 causes
motor neuron disease and defective spermiogenesis in
the wobbler mouse. Nature Genet. 37, 1213–1215
(2005).
134. Rothstein, J., Kammen, M., Levey, A., Martin, L. &
Kuncl, R. Selective loss of glial glutamate transporter
GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol.
38, 73–84 (1995).
135. Rothstein, J. D. et al. Abnormal excitatory amino acid
metabolism in amyotrophic lateral sclerosis. Ann.
Neurol. 28, 18–25 (1990).
136. Rothstein, J. D., Martin, L. J. & Kuncl, R. W. Decreased
glutamate transport by the brain and spinal cord in
amyotrophic lateral sclerosis [see comments]. N. Engl.
J. Med. 326, 1464–1468 (1992).
137. Arriza, J. L. et al. Functional comparisons of three
glutamate transporter subtypes cloned from human
motor cortex. J. Neurosci. 14, 5559–5569 (1994).
138. Arriza, J. L., Eliasof, S., Kavanaugh, M. P. & Amara, S. G.
Excitatory amino acid transporter 5, a retinal
glutamate transporter coupled to a chloride
conductance. Proc. Natl Acad. Sci. USA 94,
4155–4160 (1997).
139. Fairman, W. A., Vandenberg, R. J., Arriza, J. L.,
Kavanaugh, M. P. & Amara, S. G. An excitatory amino-
acid transporter with properties of a ligand-gated
chloride channel. Nature 375, 599–603 (1995).
140. Trotti, D., Rolfs, A., Danbolt, N. C., Brown, R. H. Jr &
Hediger, M. A. SOD1 mutants linked to amyotrophic
lateral sclerosis selectively inactivate a glial glutamate
transporter. Nature Neurosci 2, 848 (1999).
141. Howland, D. S. et al. Focal loss of the glutamate
transporter EAAT2 in a transgenic rat model of SOD1
mutant-mediated amyotrophic lateral sclerosis (ALS).
Proc. Natl Acad. Sci. USA 99, 1604–1609 (2002).
142. Lin, C. L. et al. Aberrant RNA processing in a
neurodegenerative disease: the cause for absent
EAAT2, a glutamate transporter, in amyotrophic
lateral sclerosis. Neuron 20, 589–602 (1998).
143. Aoki, M. et al. Mutations in the glutamate transporter
EAAT2 gene do not cause abnormal EAAT2 transcripts
in amyotrophic lateral sclerosis. Ann. Neurol. 43,
645–653 (1998).
144. Trotti, D. et al. Amyotrophic lateral sclerosis-linked
glutamate transporter mutant has impaired glutamate
clearance capacity. J. Biol. Chem. 276, 576–582
(2001).
145. Alexianu, M. E. et al. The role of calcium-binding
proteins in selective motoneuron vulnerability in
amyotrophic lateral sclerosis. Ann. Neurol. 36,
846–858 (1994).
146. Williams, D. N. C. & Ince, P. G.
α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid receptors: a molecular
determinant of selective vulnerability in amyotrophic
lateral sclerosis. Ann. Neurol. 42, 200–207 (1997).
147. Ince, P. G., Shaw, P. J., Slade, J. Y., Jones, C. &
Hudgson, P. Familial amyotrophic lateral sclerosis with
a mutation in exon 4 of the Cu/Zn superoxide
dismutase gene: pathological and
immunocytochemical changes. Acta Neuropathol.
(Berl.) 92, 395–403 (1996).
148. Pramatarova, A., Laganiere, J., Roussel, J., Brisebois, K.
& Rouleau, G. A. Neuron specific expression of mutant
superoxide dismutase 1 in transgenic mice does not
lead to motor neuron impairment. J. Neurosci. 21,
3369–3374 (2001).
149. Gong, Y. H., Parsadanian, A. S., Andreeva, A.,
Snider, W. D. & Elliott, J. L. Restricted expression of
G86R Cu/Zn superoxide dismutase in astrocytes
results in astrocytosis but does not cause motoneuron
degeneration. J. Neurosci. 20, 660–665 (2000).
150. Clement, A. M. et al. Wild-type nonneuronal cells
extend survival of SOD1 mutant motor neurons in ALS
mice. Science 302, 113–117 (2003).
Demonstrates the importance of non-neuronal cells
in ALS pathogenesis.
151. Boillee, S. et al. Onset and progression in inherited
ALS determined by motor neurons and microglia.
Science 312, 1389–1392 (2006).
Elegantly highlights the importance of microglia for
disease progression in transgenic ALS mice.
152. Wang, J. et al. Coincident thresholds of mutant
protein for paralytic disease and protein aggregation
caused by restrictively expressed superoxide dismutase
cDNA. Neurobiol. Dis. 20, 943–952 (2005).
153. Lefebvre, S. et al. Identification and characterization of
a spinal muscular atrophy-determining gene. Cell 80,
155–165 (1995).
154. Mersiyanova, I. V. et al. A new variant of Charcot-
Marie-Tooth disease type 2 is probably the result of a
mutation in the neurofilament-light gene. Am. J. Hum.
Genet. 67, 37–46 (2000).
155. Bomont, P. et al. The gene encoding gigaxonin, a new
member of the cytoskeletal BTB/kelch repeat family, is
mutated in giant axonal neuropathy. Nature Genet.
26, 370–374 (2000).
156. Kuhlenbaumer, G. Giant axonal neuropathy (GAN):
case report and two novel mutations in the gigaxonin
gene. Neurology 58, 1273–1276 (2002).
157. Zhao, C. et al. Charcot-Marie-Tooth disease type 2A
caused by mutation in a microtubule motor KIF1B
β.
Cell 105, 587–597 (2001).
158. Zuchner, S. et al. Mutations in the pleckstrin homology
domain of dynamin 2 cause dominant intermediate
Charcot-Marie-Tooth disease. Nature Genet. 37,
289–294 (2005).
159. Zhao, X. et al. Mutations in a newly identified GTPase
gene cause autosomal dominant hereditary spastic
paraplegia. Nature Genet. 29, 326–331 (2001).
160. Verhoeven, K. et al. Mutations in the small GTP-ase
late endosomal protein RAB7 cause Charcot-Marie-
Tooth type 2B neuropathy. Am. J. Hum. Genet. 72,
722–727 (2003).
161. Patel, H. et al. SPG20 is mutated in Troyer syndrome,
an hereditary spastic paraplegia. Nature Genet. 31,
347–348 (2002).
162. Antonellis, A. et al. Glycyl tRNA synthetase mutations
in Charcot-Marie-Tooth disease type 2D and distal
spinal muscular atrophy type V. Am. J. Hum. Genet.
72, 1293–1299 (2003).
163. Jordanova, A. et al. Disrupted function and axonal
distribution of mutant tyrosyl-tRNA synthetase in
dominant intermediate Charcot-Marie-Tooth
neuropathy. Nature Genet. 38, 197–202 (2006).
164. Kalaydjieva, L. et al. N-myc downstream-regulated
gene 1 is mutated in hereditary motor and sensory
neuropathy-Lom. Am. J. Hum. Genet. 67, 47–58
(2000).
165. Grohmann, K. et al. Mutations in the gene encoding
immunoglobulin mubinding protein 2 cause spinal
muscular atrophy with respiratory distress type 1.
Nature Genet. 29, 75–77 (2001).
166. Evgrafov, O. V. et al. Mutant small heat-shock protein
27 causes axonal Charcot-Marie-Tooth disease and
distal hereditary motor neuropathy. Nature Genet. 36,
602–606 (2004).
167. Irobi, J., De Jonghe, P. & Timmerman, V. Molecular
genetics of distal hereditary motor neuropathies.
Hum. Mol. Genet. 13, R195–R202 (2004).
168. White, R. J. & Reynolds, I. J. Mitochondrial
depolarization in glutamate-stimulated neurons: an
early signal specific to excitotoxin exposure.
J. Neurosci. 16, 5688–5697 (1996).
169. Roa, B. B., Garcia, C. A. & Lupski, J. R. Charcot-Marie-
Tooth disease type 1A: molecular mechanisms of gene
dosage and point mutation underlying a common
inherited peripheral neuropathy. Int. J. Neurol.
25–26, 97–107 (1991).
170. Hayasaka, K. et al. De novo mutation of the myelin P
0
gene in Dejerine-Sottas disease (hereditary motor and
sensory neuropathy type III).
Nature Genet. 5,
266–268 (1993).
171. Street, V. A. et al. Mutation of a putative protein
degradation gene LITAF/SIMPLE in Charcot-Marie-
Tooth disease 1C. Neurology 60, 22–26 (2003).
172. Warner, L. E. et al. Mutations in the early growth
response 2 (EGR2) gene are associated with
hereditary myelinopathies. Nature Genet. 18,
382–384 (1998).
173. Baxter, R. V. et al. Ganglioside-induced differentiation-
associated protein-1 is mutant in Charcot-Marie-Tooth
disease type 4A/8q21. Nature Genet. 30, 21–22
(2002).
174. Bolino, A. et al. Charcot-Marie-Tooth type 4B is
caused by mutations in the gene encoding
myotubularin-related protein-2. Nature Genet. 25,
17–19 (2000).
175. Senderek, J. et al. Mutation of the SBF2 gene,
encoding a novel member of the myotubularin
family, in Charcot-Marie-Tooth neuropathy type
4B2/11p15. Hum. Mol. Genet. 12, 349–356
(2003).
176. Senderek, J.
et al. Mutations in a gene encoding a
novel SH3/TPR domain protein cause autosomal
recessive Charcot-Marie-Tooth type 4C neuropathy.
Am. J. Hum. Genet. 73, 1106–1119 (2003).
177. Boerkoel, C. F. et al. Periaxin mutations cause
recessive Dejerine-Sottas neuropathy. Am. J. Hum.
Genet. 68, 325–333 (2001).
178. Bergoffen, J. et al. Connexin mutations in X-linked
Charcot-Marie-Tooth disease. Science 262,
2039–2042 (1993).
179. Bruijn, L. I. & Cudkowicz, M. Therapeutic targets for
amyotrophic lateral sclerosis: current treatments and
prospects for more effective therapies. Expert Rev.
Neurother. 6, 417–428 (2006).
180. Kaspar, B. K., Llado, J., Sherkat, N., Rothstein, J. D. &
Gage, F. H. Retrograde viral delivery of IGF-1 prolongs
survival in a mouse ALS model. Science 301,
839–842 (2003).
Describes an effective therapy in ALS mice based
on the delivery of insulin-like growth factor 1 (IGF1)
to motor neurons via a retrogradely transported
AAV2–IGF1 gene therapy vector.
181. Raoul, C. et al. Lentiviral-mediated silencing of SOD1
through RNA interference retards disease onset and
progression in a mouse model of ALS. Nature Med.
11, 423–428 (2005).
182. Ralph, G. S. et al. Silencing mutant SOD1 using RNAi
protects against neurodegeneration and extends
survival in an ALS model. Nature Med. 11, 429–433
(2005).
References 180 and 181 present compelling
evidence that the process of motor neuron cell
death in ALS mice can be slowed using inhibitory
RNA to silence the offending, mutated SOD1
genes.
R E V I E W S
722
|
SEPTEMBER 2006
|
VOLUME 7
www.nature.com/reviews/neuro
©
200
6
Nature Publishing Group
183. Ralph, G. S., Mazarakis, N. D. & Azzouz, M.
Therapeutic gene silencing in neurological disorders,
using interfering RNA. J. Mol. Med. 83, 413–419
(2005).
184. Maxwell, M. M., Pasinelli, P., Kazantsev, A. G. &
Brown, R. H. Jr. RNA interference-mediated silencing
of mutant superoxide dismutase rescues cyclosporin
A-induced death in cultured neuroblastoma cells.
Proc. Natl Acad. Sci. USA 101,3178–3185 (2004).
185. Miller, T. M. et al. Virus-delivered small RNA silencing
sustains strength in amyotrophic lateral sclerosis.
Ann. Neurol. 57, 773–776 (2005).
186. Smith, R. A. et al. Antisense oligonucleotide therapy
for neurodegenerative disease. J. Clin. Invest. 116,
2290–2296 (2006).
187. Wills, A. M. & Brown, R. H. Jr in Amyotrophic Lateral
Sclerosis Ch. 14 (eds Brown, R. H. Jr, Swash, M. &
Pasinelli, P.) 269–282 (Taylor & Francis, Abingdon,
2006).
188. Zuchner, S. et al. Mutations in the mitochondrial
GTPase mitofusin 2 cause Charcot-Marie-Tooth
neuropathy type 2A. Nature Genet. 36, 449–451
(2004).
189. Zuchner, S. et al. Mutations in the pleckstrin homology
domain of dynamin 2 cause dominant intermediate
Charcot-Marie-Tooth disease. Nature Genet. 37,
289–294 (2005).
190. Verhoeven, K. et al. Slowed conduction and thin
myelination of peripheral nerves associated with
mutant rho Guanine-nucleotide exchange factor 10.
Am. J. Hum. Genet. 73, 926–932 (2003).
191. Bejaoui, K. et al. SPTLC1 is mutated in hereditary
sensory neuropathy, type 1. Nature Genet. 27,
261–262 (2001).
192. Grandchamp, B. et al. Tissue-specific splicing mutation
in acute intermittent porphyria. Proc. Natl Acad. Sci.
USA 86, 661–664 (1989).
193. Goizet, C. et al. A new mutation of the lamin A/C gene
leading to autosomal dominant axonal neuropathy,
muscular dystrophy, cardiac disease, and leuconychia.
J. Med. Genet. 41, e29 (2004).
194. DeSandre-Giovannoli, A. et al. Homozygous defects
in LMNa, encoding lamin A/C nuclear envelope
proteins, cause autosomal recessive neuropathy in
human (Charcot-Marie Tooth disorder, Type 2)
and mouse. Am. J. Hum. Gen. 70, 726–736
(2002).
195. Howard, H. C. et al. The K–Cl cotransporter KCC3 is
mutant in a severe peripheral neuropathy associated
with agenesis of the corpus callosum. Nature Genet.
32, 384–392 (2002).
196. Indo, Y. et al. Mutations in the TRKA/NGF receptor
gene in patients with congenital insensitivity to pain
with anhidrosis. Nature Genet. 13, 485–488 (1996).
197. Kihara, H., Fluharty, A. L., O’Brien, J. S. & Fish, C. H.
Metachromatic leukodystrophy caused by a partial
cerebroside sulfatase. Clin. Genet. 21, 253–261 (1982).
198. Mihalik, S. J. et al. Identification of PAHX, a Refsum
disease gene. Nature Genet. 17, 185–189 (1997).
199. Anderson, S. L. et al. Familial dysautonomia is caused
by mutations of the IKAP gene. Am. J. Hum. Genet.
68, 753–758 (2001).
200. Rust, S. et al. Tangier disease is caused by mutations
in the gene encoding ATP-binding cassette
transporter 1. Nature Genet. 22, 352–355 (1999).
201. La Spada, A. R., Wilson, E. M., Luban, D. B.,
Harding, A. E. & Fischbeck, K. H. Androgen receptor
gene mutations in X-linked spinal and bulbar muscular
atrophy. Nature 352, 77–79 (1991).
202. Yamada, K. et al. Heterozygous mutations of the
kinesin KIF21A in congenital fibrosis of the extraocular
muscles type 1 (CFEOM1). Nature Genet. 35,
318–321 (2003).
203. Takeda, K. et al. Fine assignment of
β-hexosaminidase
A
α subunit on 15q23–24 by high resolution in situ
hybridization.
Tohoku J. Exp. Med. 160, 203–211
(1990).
204. Windpassinger, C.
et al. Heterozygous missense
mutations in BSCL2 are associated with distal
hereditary motor neuropathy and Silver syndrome.
Nature Genet. 36, 271–276 (2004).
205. Hansen, J. J. et al. Hereditary spastic paraplegia
SPG13 is associated with a mutation in the gene
encoding the mitochondrial chaperonin Hsp60.
Am. J. Hum. Genet. 70, 1328–1332 (2002).
206. Reid, E. et al. A kinesin heavy chain (KIF5A) mutation
in hereditary spastic paraplegia (SPG10). Am. J. Hum.
Genet. 71, 1189–1194 (2002).
207. Rainier, S., Chai, J. H., Tokarz, D., Nicholls, R. D. &
Fink, J. K. NIPA1 gene mutations cause autosomal
dominant hereditary spastic paraplegia (SPG6).
Am. J. Hum. Genet. 73, 967–971 (2003).
208. Hazan, J. et al. Spastin, a new AAA protein, is altered
in the most frequent form of autosomal dominant
spastic paraplegia. Nature Genet. 23, 296–303
(1999).
209. O’Neill, B. P., Swanson, J. W., Brown, F. R., Griffin, J. W.
& Moser, H. W. Familial spastic paraparesis: an
adrenoleukodystrophy phenotype? Neurology 35,
1233–1235 (1985).
210. Simpson, M. A. et al. Maspardin is mutated in mast
syndrome, a complicated form of hereditary spastic
paraplegia associated with dementia. Am. J. Hum.
Genet. 73, 1147–1156 (2003).
211. Casari, G. et al. Spastic paraplegia and OXPHOS
impairment caused by mutations in paraplegin, a
nuclear-encoded mitochondrial metalloprotease.
Cell 93, 973–983 (1998).
212. Touraine, R. L. et al. Neurological phenotype in
Waardenburg syndrome type 4 correlates with novel
SOX10 truncating mutations and expression in
developing brain. Am. J. Hum. Genet. 66,
1496–1503 (2000).
213. Jouet, M. et al. X-linked spastic paraplegia (SPG1),
MASA syndrome and X-linked hydrocephalus result in
mutations in the L1 gene. Nature Genet. 7, 402–407
(1994).
214. Saugier-Veber, P.
et al. X-linked spastic paraplegia and
Pelizaeus-Merzbacher disease are allelic disorders at
the proteolipid protein locus. Nature Genet. 6,
257–262 (1994).
Acknowledgements
The authors wish to acknowledge the following for generous
support of ALS research: Al-Athel ALS Research Foundation,
ALS Association, ALS Therapy Alliance, Angel Fund, Muscular
Dystrophy Association, National Institutes of Health (National
Institute of Neurological Disorders and Stroke, National
Institute on Aging), Pierre L. de Bourgknecht ALS Foundation,
Pape Adams Foundation, Project ALS and Spinal Cord
Research Foundation.
Competing interests statement
The authors declare no competing financial interests.
DATABASES
The following terms in this article are linked online to:
Entrez Gene:
http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db=gene
ALS2 | ANG | CASP1 | CASP3 | CASP7 | CASP8 | CASP9 | COX1 |
dynactin | EAAT2 | SETX | SOD1 | VAPB | VEGF
OMIM: http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db=OMIM
Amyotrophic lateral sclerosis | Huntington’s disease | SMARD
FURTHER INFORMATION
ALS Online Database: http://www.alsod.org
SUPPLEMENTARY INFORMATION
See online article: S1 (figure)
Access to this links box is available online.
R E V I E W S
NATURE REVIEWS
|
NEUROSCIENCE
VOLUME 7
|
SEPTEMBER 2006
|
723