1. Qo’shish va to’plamlar birlashmasidagi elementlar sonini topamiz. n(A)=4 n(B)=3 biroq bolishini aniqlash qiyin emas. Bu masalada A va B to’plamlar kesishadi va demak ular birlashmasidagi elementlar soni n (A)+n (B) yig’indi bilan usnma-ust tushmaydi. Shuning uchun butun nomanfiy son yig’indisi kesishmaydigan to’plamlar birlashmasi orqali aniqlanadi.
Ta’rif. Butun nomanfiy a va b sonlarni yig’indisi deb, n(A)=a, n(B)=b bo’lib kesishmaydigan A va B to’plamlar birlashmasidagi elementlar soniga aytiladi.
a+b=n , bu erda n(A)=a, n(B)=b va
Misol: Berilgan ta’rifdan foydalanib 5+2=7 bo’lishini tushuntiramiz. 5 biror A to’plamning elementlari soni bunda ularning kesishmasi bo’sh to’plam bo’lishi kerak. Masalan: A=(x,y,z,t,p) B=(a,b) to’plamlarni olamiz. Ularni birlashtiramiz:
sanash yo’li bilan ekanini aniqlaymiz demak 5+2=7
Butun nomanfiy sonlar yig’indisi mavjud va u yagonadir. Yig’indining mavjudligi va yagonaligi 2 to’plam birlashmasining mavjudligi va yagonaligidan kelib chiqadi.
Ta’rif. Ikki qo’shiluvchining yig’indisi aniqlangan va n ta qo’shiluvchining yig’indisi ham aniqlangan bo’lsin u holda n+1 qo’shiluvchidan iborat yig’indisi
a1+a2+…+an+an+1=(a1+a2…+an)+an+1 ga teng bo’ladi. Boshlang’ich matematika kursida butun nomanfiy sonni qo’shish ikkita narsalar to’plami birlashmasi bilan bog’liq amaliy mashqlar asosida kiritiladi.
2. Qo’shish qonunlari O’rin almashtirish qonuni Ixtiyoriy butun a va b sonlar uchun a+b=b+a tenglik o’rinli.
Isbot:
Yig’indining ta’rifiga ko’ra shuning uchun ixtiyoriy butun nomanfiy a va b sonlar uchun a+b=b+a Gruppalash qonuni. Ixtiyoriy butun nomanfiy a va b,c sonlar uchun a+(b+c)=(a+b)+c tenglik bajariladi. a=n(A), b=n(B), c=n(C) bo’lsin, bunda u holda 2 son yig’indisiniung ta’rifiga ko’ra (a+b)+c=deb yozish mumkin. To’plamlarning birlashmasi gruppalash qonuniga bo’ysingani uchun. bo’ladi. Bundan ikki sonning yig’indisining ta’rifga ko’ra ga ega bo’lamiz. Demak, ixtiyoriy butun nomanfiy a va b,c sonlar uchun (a+b)+c=a+(b+c) bo’ladi.