Information Fusion 88 (2022) 263–280
279
M.F. Criado et al.
[55]
S.A. Dudani, The distance-weighted k-nearest-neighbor rule, IEEE Trans. Syst.
Man Cybern. (1976) 325–327.
[56]
J. Ren, X. Shen, Z. Lin, R. Mech, D.J. Foran, Personalized image aesthetics, in:
Proceedings of the IEEE International Conference on Computer Vision, 2017,
pp. 638–647.
[57]
A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny
images, 2009.
[58]
F. Sattler, K.-R. Müller, W. Samek, Clustered federated learning: Model-agnostic
distributed multitask optimization under privacy constraints, IEEE Trans. Neural
Netw. Learn. Syst. (2020).
[59]
N. Shlezinger, S. Rini, Y.C. Eldar, The communication-aware clustered federated
learning problem, in: 2020 IEEE International Symposium on Information
Theory, ISIT, IEEE, 2020, pp. 2610–2615.
[60]
C. Briggs, Z. Fan, P. Andras, Federated learning with hierarchical clustering of
local updates to improve training on non-IID data, in: 2020 International Joint
Conference on Neural Networks, IJCNN, IEEE, 2020, pp. 1–9.
[61] J. Hoffman, M. Mohri, N. Zhang, Algorithms and theory for multiple-source
adaptation, 2018, arXiv preprint
arXiv:1805.08727
.
[62]
M. Mohri, G. Sivek, A.T. Suresh, Agnostic federated learning, in: International
Conference on Machine Learning, PMLR, 2019, pp. 4615–4625.
[63] Y. Mansour, M. Mohri, J. Ro, A.T. Suresh, Three approaches for personalization
with applications to federated learning, 2020, arXiv preprint
arXiv:2002.10619
.
[64]
G. Cohen, S. Afshar, J. Tapson, A. Van Schaik, EMNIST: Extending MNIST
to handwritten letters, in: 2017 International Joint Conference on Neural
Networks, IJCNN, IEEE, 2017, pp. 2921–2926.
[65]
B. Lake, R. Salakhutdinov, J. Gross, J. Tenenbaum, One shot learning of simple
visual concepts, in: Proceedings of the Annual Meeting of the Cognitive Science
Society, 33, 2011.
[66]
Y. Wu, J. Lim, M.-H. Yang, Online object tracking: A benchmark, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp.
2411–2418.
[67]
S. Hadfield, K. Lebeda, R. Bowden, The visual object tracking VOT2014
challenge results, in: European Conference on Computer Vision (ECCV) Visual
Object Tracking Challenge Workshop, University of Surrey, 2014.
[68] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, 2017, arXiv preprint
arXiv:1708.
07747
.
[69]
H. Zhao, R.T. Des Combes, K. Zhang, G. Gordon, On learning invariant
representations for domain adaptation, in: International Conference on Machine
Learning, PMLR, 2019, pp. 7523–7532.
[70]
A.-A. Liu, N. Xu, W.-Z. Nie, Y.-T. Su, Y.-D. Zhang, Multi-domain and multi-task
learning for human action recognition, IEEE Trans. Image Process. 28 (2) (2018)
853–867.
[71]
J. Hoffman, B. Kulis, T. Darrell, K. Saenko, Discovering latent domains for
multisource domain adaptation, in: European Conference on Computer Vision,
Springer, 2012, pp. 702–715.
[72]
F. Siyahjani, R. Almohsen, S. Sabri, G. Doretto, A supervised low-rank method
for learning invariant subspaces, in: Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 4220–4228.
[73]
C. Zhang, H. Zhang, L.E. Parker, Feature space decomposition for effective robot
adaptation, in: 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS, IEEE, 2015, pp. 441–448.
[74]
M. Wang, B. Liu, J. Tang, X.-S. Hua, Metric learning with feature decomposition
for image categorization, Neurocomputing 73 (10–12) (2010) 1562–1569.
[75]
K.Q. Weinberger, L.K. Saul, Distance metric learning for large margin nearest
neighbor classification, J. Mach. Learn. Res. 10 (2) (2009).
[76]
L. Yang, R. Jin, Distance metric learning: A comprehensive survey, Michigan
State Univ. 2 (2) (2006) 4.
[77]
E. Xing, M. Jordan, S.J. Russell, A. Ng, Distance metric learning with application
to clustering with side-information, Adv. Neural Inf. Process. Syst. 15 (2002)
521–528.
[78] I.H. Daumé, Frustratingly easy domain adaptation, 2009, arXiv preprint
arXiv:
0907.1815
.
[79]
Y. Ganin, V. Lempitsky, Unsupervised domain adaptation by backpropagation,
in: International Conference on Machine Learning, PMLR, 2015, pp. 1180–1189.
[80]
K. You, M. Long, Z. Cao, J. Wang, M.I. Jordan, Universal domain adaptation,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2720–2729.
[81]
Y. Chen, X. Qin, J. Wang, C. Yu, W. Gao, Fedhealth: A federated transfer
learning framework for wearable healthcare, IEEE Intell. Syst. 35 (4) (2020)
83–93.
[82]
M. Long, H. Zhu, J. Wang, M.I. Jordan, Deep transfer learning with joint
adaptation networks, in: International Conference on Machine Learning, PMLR,
2017, pp. 2208–2217.
[83]
X. Peng, Q. Bai, X. Xia, Z. Huang, K. Saenko, B. Wang, Moment matching for
multi-source domain adaptation, in: Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 1406–1415.
[84]
P.O. Pinheiro, Unsupervised domain adaptation with similarity learning, in: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 8004–8013.
[85]
M. Baktashmotlagh, M.T. Harandi, B.C. Lovell, M. Salzmann, Unsupervised
domain adaptation by domain invariant projection, in: Proceedings of the IEEE
International Conference on Computer Vision, 2013, pp. 769–776.
[86]
M. Dredze, K. Crammer, Online methods for multi-domain learning and adapta-
tion, in: Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing, 2008, pp. 689–697.
[87]
M. Dredze, A. Kulesza, K. Crammer, Multi-domain learning by confidence-
weighted parameter combination, Mach. Learn. 79 (1–2) (2010) 123–149.
[88]
T. Van Erven, P. Harremos, Rényi divergence and Kullback-Leibler divergence,
IEEE Trans. Inform. Theory 60 (7) (2014) 3797–3820.
[89]
E. Tzeng, J. Hoffman, K. Saenko, T. Darrell, Adversarial discriminative domain
adaptation, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 7167–7176.
[90]
Z. Pei, Z. Cao, M. Long, J. Wang, Multi-adversarial domain adaptation, in:
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
[91]
Z. Cao, L. Ma, M. Long, J. Wang, Partial adversarial domain adaptation, in:
Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp.
135–150.
[92] S. Motiian, Q. Jones, S.M. Iranmanesh, G. Doretto, Few-shot adversarial domain
adaptation, 2017, arXiv preprint
arXiv:1711.02536
.
[93] X. Peng, Z. Huang, Y. Zhu, K. Saenko, Federated adversarial domain adaptation,
2019, arXiv preprint
arXiv:1911.02054
.
[94]
M. Long, Y. Cao, J. Wang, M. Jordan, Learning transferable features with deep
adaptation networks, in: International Conference on Machine Learning, PMLR,
2015, pp. 97–105.
[95] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, T. Darrell, Deep domain confusion:
Maximizing for domain invariance, 2014, arXiv preprint
arXiv:1412.3474
.
[96] M. Long, H. Zhu, J. Wang, M.I. Jordan, Unsupervised domain adaptation with
residual transfer networks, 2016, arXiv preprint
arXiv:1602.04433
.
[97]
K. Saenko, B. Kulis, M. Fritz, T. Darrell, Adapting visual category models to
new domains, in: European Conference on Computer Vision, Springer, 2010,
pp. 213–226.
[98]
H. Venkateswara, J. Eusebio, S. Chakraborty, S. Panchanathan, Deep hashing
network for unsupervised domain adaptation, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 5018–5027.
[99] X. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Wang, K. Saenko, Visda: The
visual domain adaptation challenge, 2017, arXiv preprint
arXiv:1710.06924
.
[100]
Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A.Y. Ng, Reading digits in
natural images with unsupervised feature learning, 2011.
[101]
R. Gopalan, R. Li, R. Chellappa, Domain adaptation for object recognition: An
unsupervised approach, in: 2011 International Conference on Computer Vision,
IEEE, 2011, pp. 999–1006.
[102]
A. Bergamo, L. Torresani, Exploiting weakly-labeled web images to improve
object classification: a domain adaptation approach, Adv. Neural Inf. Process.
Syst. 23 (2010) 181–189.
[103]
Y. Chen, J. Bi, J.Z. Wang, MILES: Multiple-instance learning via embedded
instance selection, IEEE Trans. Pattern Anal. Mach. Intell. 28 (12) (2006)
1931–1947.
[104]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale visual recognition
challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252.
[105]
N. Silberman, D. Hoiem, P. Kohli, R. Fergus, Indoor segmentation and support
inference from rgbd images, in: European Conference on Computer Vision,
Springer, 2012, pp. 746–760.
[106]
X.-D. Zhang, Machine learning, in: A Matrix Algebra Approach to Artificial
Intelligence, Springer, 2020, pp. 223–440.
[107]
T. Hiessl, Cohort-based federated learning services for industrial collaboration
on the edge, 2021.
[108] Y. Yang, T.M. Hospedales, A unified perspective on multi-domain and multi-task
learning, 2014, arXiv preprint
arXiv:1412.7489
.
[109] L. Corinzia, A. Beuret, J.M. Buhmann, Variational federated multi-task learning,
2019, arXiv preprint
arXiv:1906.06268
.
[110]
T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, N. Díaz-Rodríguez,
Continual learning for robotics: Definition, framework, learning strategies,
opportunities and challenges, Inf. Fusion 58 (2020) 52–68.
[111]
S. Thrun, T.M. Mitchell, Lifelong robot learning, Robot. Auton. Syst. 15 (1–2)
(1995) 25–46.
[112]
C. Tessler, S. Givony, T. Zahavy, D. Mankowitz, S. Mannor, A deep hierarchical
approach to lifelong learning in minecraft, in: Proceedings of the AAAI
Conference on Artificial Intelligence, 31, 2017.
[113]
A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka, T.M. Mitchell,
Toward an architecture for never-ending language learning, in: Twenty-Fourth
AAAI Conference on Artificial Intelligence, 2010.
[114]
T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, B. Yang, J. Betteridge, A.
Carlson, B. Dalvi, M. Gardner, B. Kisiel, et al., Never-ending learning, Commun.
ACM 61 (5) (2018) 103–115.
[115]
T. Xiao, J. Zhang, K. Yang, Y. Peng, Z. Zhang, Error-driven incremental learning
in deep convolutional neural network for large-scale image classification, in:
Proceedings of the 22nd ACM International Conference on Multimedia, 2014,
pp. 177–186.
|