Optimization



Yüklə 0,51 Mb.
səhifə18/19
tarix12.05.2023
ölçüsü0,51 Mb.
#112044
1   ...   11   12   13   14   15   16   17   18   19
bayesian optimallash

Mathematical Programming, 45(1-3):503–528.
Lizotte, D. (2008). Practical Bayesian Optimization. PhD thesis, University of Alberta.
Lizotte, D., Wang, T., Bowling, M., and Schuurmans, D. (2007). Automatic gait optimization with Gaussian process regression. In Proceedings of IJCAI, pages 944–949.
Mahajan, A. and Teneketzis, D. (2008). Multi-armed bandit problems. In Hero, A., Castan˜´on, D., Cochran, D., and Kastella, K., editors, Foundations and Applications of Sensor Management, pages 121–151. Springer.
Mart´ı, R., Lozano, J. A., Mendiburu, A., and Hernando, L. (2016). Multi-start methods. Handbook of Heuristics, pages 1–21.
McLeod, M., Osborne, M. A., and Roberts, S. J. (2017). Practical bayesian optimization for variable cost objectives. arXiv preprint arXiv:1703.04335.
Mehdad, E. and Kleijnen, J. P. (2018). Efficient global optimisation for black-box simulation via sequen- tial intrinsic kriging. Journal of the Operational Research Society, 69:1–13.
Milgrom, P. and Segal, I. (2002). Envelope theorems for arbitrary choice sets. Econometrica, 70(2):583– 601.
Minka, T. P. (2001). A family of algorithms for approximate Bayesian inference. PhD thesis, Mas- sachusetts Institute of Technology.
Moˇckus, J. (1975). On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP Technical Conference, pages 400–404. Springer.
Moˇckus, J. (1989). Bayesian Approach to Global Optimization: Theory and Applications. Kluwer Aca- demic Publishers.
Moˇckus, J. and Moˇckus, L. (1991). Bayesian approach to global optimization and application to multi- objective and constrained problems. Journal of Optimization Theory and Applications, 70(1):157–172.
Moˇckus, J., Tiesis, V., and Zˇilinskas, A. (1978). The application of Bayesian methods for seeking the extremum. In Dixon, L. and Szego, G., editors, Towards Global Optimisation, volume 2, pages 117–129. Elsevier Science Ltd., North Holland, Amsterdam.
Neal, R. M. (2003). Slice sampling. Annals of Statistics, 31(3):705–741.
Negoescu, D. M., Frazier, P. I., and Powell, W. B. (2011). The knowledge gradient algorithm for sequencing experiments in drug discovery. INFORMS Journal on Computing, 23(1):46–363.
Osborne, M. A., Garnett, R., and Roberts, S. J. (2009). Gaussian processes for global optimization. In
3rd International Conference on Learning and Intelligent Optimization (LION3), pages 1–15. Citeseer. Packwood, D. (2017). Bayesian Optimization for Materials Science, volume 3. Springer.
Perez, S. (2015). Twitter acquires machine learning startup whetlab. TechCrunch. Accessed July 3, 2018.
Poloczek, M., Wang, J., and Frazier, P. (2017). Multi-information source optimization. In Advances in Neural Information Processing Systems, pages 4291–4301.
Powell, W. B. (2007). Approximate Dynamic Programming: Solving the Curses of Dimensionality. John Wiley & Sons, New York.
Rasmussen, C. and Williams, C. (2006). Gaussian Processes for Machine Learning. MIT Press, Cam- bridge, MA.
Regis, R. and Shoemaker, C. (2005). Constrained global optimization of expensive black box functions using radial basis functions. Journal of Global Optimization, 31(1):153–171.
Regis, R. and Shoemaker, C. (2007a). Improved strategies for radial basis function methods for global optimization. Journal of Global Optimization, 37(1):113–135.
Regis, R. and Shoemaker, C. (2007b). Parallel radial basis function methods for the global optimization of expensive functions. European Journal of Operational Research, 182(2):514–535.
Robbins, H. and Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, 22(3):400–407.
Roustant, O., Ginsbourger, D., and Deville, Y. (2012). Dicekriging, diceoptim: Two r packages for the analysis of computer experiments by kriging-based metamodeling and optimization. Journal of Statistical Software, Articles, 51(1):1–55.
Salemi, P., Nelson, B. L., and Staum, J. (2014). Discrete optimization via simulation using Gaussian Markov random fields. In Proceedings of the 2014 Winter Simulation Conference, pages 3809–3820. IEEE Press.
Sasena, M. (2002). Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations. PhD thesis, University of Michigan.
Schonlau, M., Welch, W. J., and Jones, D. R. (1998). Global versus local search in constrained optimiza- tion of computer models. Lecture Notes Monograph Series, 34:11–25.
Scott, W., Frazier, P. I., and Powell, W. B. (2011). The correlated knowledge gradient for simulation opti- mization of continuous parameters using Gaussian process regression. SIAM Journal on Optimization, 21(3):996–1026.
Seko, A., Togo, A., Hayashi, H., Tsuda, K., Chaput, L., and Tanaka, I. (2015). Prediction of low-thermal- conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization. Physical Review Letters, 115.
Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. (2016). Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175.
Shan, S. and Wang, G. G. (2010). Survey of modeling and optimization strategies to solve high- dimensional design problems with computationally-expensive black-box functions. Structural and Multidisciplinary Optimization, 41(2):219–241.
Shoemaker, C., Regis, R., and Fleming, R. (2007). Watershed calibration using multistart local opti- mization and evolutionary optimization with radial basis function approximation/calage au niveau du bassin versant a` l’aide d’une optimisation locale `a d´emarrage multiple et d’une optimisation ´evolutive avec approximation a` fonctions de base radiale. Hydrological Sciences Journal/Journal des Sciences Hydrologiques, 52(3):450–465.
Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. In Advances in Neural Information Processing Systems, pages 2951–2959.
Snoek, J., Swersky, K., Zemel, R., and Adams, R. (2014). Input warping for Bayesian optimization of non-stationary functions. In International Conference on Machine Learning, pages 1674–1682.
S´obester, A., Leary, S., and Keane, A. (2004). A parallel updating scheme for approximating and optimiz- ing high fidelity computer simulations. Structural and Multidisciplinary Optimization, 27(5):371–383.
Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT press Cambridge. Swersky, K., Snoek, J., and Adams, R. P. (2013). Multi-task Bayesian optimization. In Advances in

Yüklə 0,51 Mb.

Dostları ilə paylaş:
1   ...   11   12   13   14   15   16   17   18   19




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin