MathematicalProgramming, 45(1-3):503–528.
Lizotte, D. (2008). PracticalBayesianOptimization. PhD thesis, University of Alberta.
Lizotte, D., Wang, T., Bowling, M., and Schuurmans, D. (2007). Automatic gait optimization with Gaussian process regression. In ProceedingsofIJCAI, pages 944–949.
Mahajan, A. and Teneketzis, D. (2008). Multi-armed bandit problems. In Hero, A., Castan˜´on, D., Cochran, D., and Kastella, K., editors, Foundations and Applications of Sensor Management, pages 121–151. Springer.
Mart´ı, R., Lozano, J. A., Mendiburu, A., and Hernando, L. (2016). Multi-start methods. Handbook ofHeuristics, pages 1–21.
McLeod, M., Osborne, M. A., and Roberts, S. J. (2017). Practical bayesian optimization for variable cost objectives. arXivpreprintarXiv:1703.04335.
Mehdad, E. and Kleijnen, J. P. (2018). Efficient global optimisation for black-box simulation via sequen- tial intrinsic kriging. JournaloftheOperationalResearchSociety, 69:1–13.
Milgrom, P. and Segal, I. (2002). Envelope theorems for arbitrary choice sets. Econometrica, 70(2):583– 601.
Minka, T. P. (2001). A family of algorithms for approximate Bayesian inference. PhD thesis, Mas- sachusetts Institute of Technology.
Moˇckus, J. (1975). On Bayesian methods for seeking the extremum. In Optimization Techniques IFIP TechnicalConference, pages 400–404. Springer.
Moˇckus, J. (1989). Bayesian Approach to Global Optimization: Theory and Applications. Kluwer Aca- demic Publishers.
Moˇckus, J. and Moˇckus, L. (1991). Bayesian approach to global optimization and application to multi- objective and constrained problems. Journal ofOptimization Theory andApplications, 70(1):157–172.
Moˇckus, J., Tiesis, V., and Zˇilinskas, A. (1978). The application of Bayesian methods for seeking the extremum. In Dixon, L. and Szego, G., editors, TowardsGlobalOptimisation, volume 2, pages 117–129. Elsevier Science Ltd., North Holland, Amsterdam.
Neal, R. M. (2003). Slice sampling. AnnalsofStatistics, 31(3):705–741.
Negoescu, D. M., Frazier, P. I., and Powell, W. B. (2011). The knowledge gradient algorithm for sequencing experiments in drug discovery. INFORMSJournalonComputing, 23(1):46–363.
Osborne, M. A., Garnett, R., and Roberts, S. J. (2009). Gaussian processes for global optimization. In
3rdInternationalConferenceonLearningandIntelligentOptimization(LION3), pages 1–15. Citeseer. Packwood, D. (2017). BayesianOptimizationforMaterialsScience, volume 3. Springer.
Perez, S. (2015). Twitter acquires machine learning startup whetlab. TechCrunch. Accessed July 3, 2018.
Poloczek, M., Wang, J., and Frazier, P. (2017). Multi-information source optimization. In AdvancesinNeuralInformationProcessingSystems, pages 4291–4301.
Powell, W. B. (2007). ApproximateDynamicProgramming:SolvingtheCursesofDimensionality. John Wiley & Sons, New York.
Rasmussen, C. and Williams, C. (2006). GaussianProcessesforMachineLearning. MIT Press, Cam- bridge, MA.
Regis, R. and Shoemaker, C. (2005). Constrained global optimization of expensive black box functions using radial basis functions. JournalofGlobalOptimization, 31(1):153–171.
Regis, R. and Shoemaker, C. (2007a). Improved strategies for radial basis function methods for global optimization. JournalofGlobalOptimization, 37(1):113–135.
Regis, R. and Shoemaker, C. (2007b). Parallel radial basis function methods for the global optimization of expensive functions. EuropeanJournalofOperationalResearch, 182(2):514–535.
Robbins, H. and Monro, S. (1951). A stochastic approximation method. TheAnnalsofMathematicalStatistics, 22(3):400–407.
Roustant, O., Ginsbourger, D., and Deville, Y. (2012). Dicekriging, diceoptim: Two r packages for the analysis of computer experiments by kriging-based metamodeling and optimization. Journal ofStatisticalSoftware,Articles, 51(1):1–55.
Salemi, P., Nelson, B. L., and Staum, J. (2014). Discrete optimization via simulation using Gaussian Markov random fields. In Proceedings of the 2014 Winter Simulation Conference, pages 3809–3820. IEEE Press.
Sasena, M. (2002). FlexibilityandEfficiencyEnhancementsforConstrainedGlobalDesignOptimizationwithKrigingApproximations. PhD thesis, University of Michigan.
Schonlau, M., Welch, W. J., and Jones, D. R. (1998). Global versus local search in constrained optimiza- tion of computer models. LectureNotes—MonographSeries, 34:11–25.
Scott, W., Frazier, P. I., and Powell, W. B. (2011). The correlated knowledge gradient for simulation opti- mization of continuous parameters using Gaussian process regression. SIAM Journal on Optimization, 21(3):996–1026.
Seko, A., Togo, A., Hayashi, H., Tsuda, K., Chaput, L., and Tanaka, I. (2015). Prediction of low-thermal- conductivity compounds with first-principles anharmonic lattice-dynamics calculations and Bayesian optimization. PhysicalReviewLetters, 115.
Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., and de Freitas, N. (2016). Taking the human out of the loop: A review of Bayesian optimization. ProceedingsoftheIEEE, 104(1):148–175.
Shan, S. and Wang, G. G. (2010). Survey of modeling and optimization strategies to solve high- dimensional design problems with computationally-expensive black-box functions. Structural andMultidisciplinaryOptimization, 41(2):219–241.
Shoemaker, C., Regis, R., and Fleming, R. (2007). Watershed calibration using multistart local opti- mization and evolutionary optimization with radial basis function approximation/calage au niveau du bassin versant a` l’aide d’une optimisation locale `a d´emarrage multiple et d’une optimisation ´evolutive avec approximation a` fonctions de base radiale. Hydrological Sciences Journal/Journal des Sciences Hydrologiques, 52(3):450–465.
Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. In AdvancesinNeuralInformationProcessingSystems, pages 2951–2959.
Snoek, J., Swersky, K., Zemel, R., and Adams, R. (2014). Input warping for Bayesian optimization of non-stationary functions. In InternationalConferenceonMachineLearning, pages 1674–1682.
S´obester, A., Leary, S., and Keane, A. (2004). A parallel updating scheme for approximating and optimiz- ing high fidelity computer simulations. StructuralandMultidisciplinaryOptimization, 27(5):371–383.
Sutton, R. S. and Barto, A. G. (1998). ReinforcementLearning:AnIntroduction. MIT press Cambridge. Swersky, K., Snoek, J., and Adams, R. P. (2013). Multi-task Bayesian optimization. In Advancesin