O‘zbekiston respublikasi oliy va o‘rta maxsus ta’lim vazirligi m. M. Mirsaidov, T. M. Sobirjonov nazariy mexanika


 Qattiq jism (mexanik sistema) dinamikasining umumiy teoremalari



Yüklə 6,14 Mb.
Pdf görüntüsü
səhifə140/177
tarix14.12.2023
ölçüsü6,14 Mb.
#177756
1   ...   136   137   138   139   140   141   142   143   ...   177
Nazariy Mexanika darslik

4.2.3. Qattiq jism (mexanik sistema) dinamikasining umumiy teoremalari. 
 
Moddiy nuqta dinamikasida aytilganidek umumiy teoremalar masalani 
qisqa yoʻl bilan, ya’ni differentsial tenglamalarini tuzib oʻtirmay, harakatning 
bosh-langʻich va chegaraviy shartlaridan foydalanib yechadi. Mexanik sistema 
uchun vektor koʻrinishida 
n-
ta, koordinatalar shaklida esa 
3n-
ta tenglama tuzish, 
integrallash va integral doimiylarini aniqlash juda koʻp kuch va vaqt talab qiladi. 
Undan tashqari, noma’lum boʻlgan ichki kuchlarning xossalariga asosan ishtirok 
etmasligi masalaning yechimini yana ham soddalashtiradi. Moddiy nuqta 
dinamikasida tanishganimizday mexanik sistema uchun harakat miqdori, harakat 
miqdori momenti va kinetik energiya teoremalarini koʻrib chiqamiz. 


250 
A.
 
MEXANIK SISTEMA HARAKAT MIQDORINING 
OʻZGARISHI HAQIDAGI TEOREMA. 
Faraz qilaylik, mexanik sistemaning massalari 
,…,
 
nuqtalardan iborat boʻlib, ularning tezliklari mos ravishda ,
,
,…,
boʻlsa, 
sistemaning harakat midori
deb, 
sistema nuqtalari harakat miqdorlarining 
geometrik yig‘indisi (bosh vektori)ga teng bo‘lgan 
-vektorga aytiladi


(4.95)
Uning birligi ham 
kg
 
boʻlib, yoʻnalishi tezlik vektori yoʻnalishi boʻyicha 
yoʻnaladi. Oxirgi tenglikni yana ham soddalashtirish uchun (4.74) tenglamani
koʻrinishida yozib olamiz va vaqt 
t
 
boʻyicha bir marta hosila olib,
M
 , yoki 
Mexanik sistema uchun 
kuch impulsi 
ham moddiy nuqta uchun kuch impulsi kabi 
hisoblanadi, faqat sistemada tashqi kuchlar olinadi: 
. (4.96) 
Teorema:
 
sistemaning harakat miqdoridan vaqt bo‘yicha olingan birinchi hosila, 
sistemaga ta’sir etuvchi barcha tashqi kuchlarning geometrik yig‘indisiga teng
.
. (4.97) 
Isboti:
(4.95) dan vaqt boʻyicha hosila olib,
,
yoki
dan 

da 
.
(4.97) formulani integral shaklida yozish mumkin: 


251 
(4.98)
Oxirgi tengliklarni koordinata oʻqlariga proyeksiyalab, 
(4.90)
va
(4.91)
Xususiy hollar: 1) Agar 
boʻlsa,
va
. (4.92) 
Demak, agar sistemaga ta’sir etayotgan tasqi kuchlar bosh vektori 
nolga teng boʻlsa, sistemaning harakat miqdori oʻzgarmaydi. 
2) Agar 
boʻlsa,
va
(4.93) 
bosh vektori biror oʻqdagi proyeksiyasi nolga teng boʻlsa, sistemaning harakat 
miqdorining shu oʻqqa proyeksiyasi ham oʻzgarmaydi. 

Yüklə 6,14 Mb.

Dostları ilə paylaş:
1   ...   136   137   138   139   140   141   142   143   ...   177




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin