O’zbekiston respublikasi xalq ta’lim vazirligi nizomiy nomidagi toshkent davlat pedagogika universiteti 103-guruh talabasi eldorova zemfiraning mavzu: “
O’zbekiston respublikasi xalq ta’lim vazirligi nizomiy nomidagi toshkent davlat pedagogika universiteti 103-guruh talabasi eldorova zemfiraning mavzu: “
O’ZBEKISTON RESPUBLIKASI
XALQ TA’LIM VAZIRLIGI NIZOMIY NOMIDAGI TOSHKENT DAVLAT PEDAGOGIKA UNIVERSITETI 103-GURUH TALABASI ELDOROVA ZEMFIRANING Mavzu: “Irratsional sonlar. Transtsendent sonlar.”
Irratsional sonlar. Transtsendent sonlar.
Irratsional sonlar. Qisqarmas kasr shaklida ifodalab bo'lmaydigan sonlar, ya'ni irratsional sonlar ham uchraydi.
Davriy bo‘lmagan cheksiz o‘nli kasr irratsional son deyiladi.
Masalan, 2,1235456528…; 0,1234568879504…;5,214503548… 1 -misol. Tomoni 1 ga teng bo'lgan kvadratning d diagonal! hech qanday ratsional son bilan ifodalan-masligini isbot qilamiz.
I s b o t . Pifagor teoremasiga muvofiq d2= 12+ 12= 2. Diagonalni qisqarmas kasr ko'rinishida yozish mumkin, deb faraz qilaylik. U holda Bunga ko'ra m — juft son, m= 2k. Shuningdek, (2k)2= 2n2 yoki 2k= n, ya'ni n ham juft son. kasrning surat va maxraji 2 ga qisqarmoqda, bu esa qilingan farazga zid. Demak, d ning uzunligi, ya'ni soni ratsional son emas.
Irratsional ifodalar quyidagi xossalarga ega:
Yechish. Agar berilgan ifodani soddalashtirishda uning aniqlanish soxasi avvaldan berilmagan bo’lsa, u holda aniqlanish soxasi topib olinadi. bo’lishini hisobga olsak,
Ratsional va irratsional sonlar birgalikda haqiqiy sonlarni tashkil qiladi.
Haqiqiy sonlar uchun quyidagi xossalar o’rinli:
1) A=B bo’lsa B=A bo’ladi.
2) A>B va B>C bo’lsa, A>C bo’ladi.
3) A>B bo’lsa, C ixtiyoriy son uchun
4) A>B bo’lib, C>0 bo’lsa, …
5) Agar A>0, B>0 bo’lib, A>B bo’lsa, u holda …(teskarilari)
Haqiqiy sonlar to’plamida bajariladigan amallar va munosabatlar:
10. 20.
30. 40.
50. 60.
Amallardan