Energy Indicators for Sustainable Development: Guidelines and Methodologies International Atomic Energy Agency United Nations Department of Economic and Social Affairs International Energy Agency Eurostat European Environment Agency


Economic  Theme Sub-theme Energy



Yüklə 0,94 Mb.
Pdf görüntüsü
səhifə14/159
tarix30.04.2023
ölçüsü0,94 Mb.
#105269
1   ...   10   11   12   13   14   15   16   17   ...   159
pub1222 web

Economic 
Theme Sub-theme Energy 
Indicator 
Components 
ECO11 Fuel shares in 
energy and 
electricity
– Primary energy supply and 
final consumption, electricity 
generation and generating 
capacity by fuel type 
Total primary energy supply
total final consumption, total 
electricity generation and total 
generating capacity 
ECO12 Non-carbon 
energy share in 
energy and 
electricity 
– Primary supply, electricity 
generation and generating 
capacity by non-carbon 
energy 
– Total primary energy supply, 
total electricity generation and 
total generating capacity 
Diversification 
(Fuel Mix) 
ECO13 Renewable 
energy share in 
energy and 
electricity 
– Primary energy supply, final 
consumption and electricity 
generation and generating 
capacity by renewable energy 
– Total primary energy supply, 
total final consumption, total 
electricity generation and total 
generating capacity 
Prices ECO14 
End-use 
energy 
prices by fuel 
and by sector 
– Energy prices (with and 
without tax/subsidy) 
Imports ECO15 
Net 
energy 
import 
dependency 
– Energy imports 
– Total primary energy supply 
Security 
Strategic Fuel 
Stocks 
ECO16 Stocks 
of 
critical fuels per 
corresponding 
fuel 
consumption 
– Stocks of critical fuel (e.g. oil, 
gas, etc.) 
– Critical fuel consumption 
 


14 
Environmental
 
Theme Sub-theme 
Energy 
Indicator 
Components 
Climate 
Change 
ENV1 GHG 
emissions 
from energy 
production and 
use per capita 
and per unit of 
GDP 
– GHG emissions from energy 
production and use 
– Population and GDP 
ENV2 Ambient 
concentrations 
of air pollutants 
in urban areas 
– Concentrations of pollutants 
in air 
Atmosphere 
Air Quality 
ENV3 Air 
pollutant 
emissions from 
energy systems 
– Air pollutant emissions 
Water Water 
Quality 
ENV4 
Contaminant 
discharges in 
liquid effluents 
from energy 
systems 
including oil 
discharges 
– Contaminant discharges in 
liquid effluents 
Soil Quality 
ENV5 
Soil area where 
acidification 
exceeds critical 
load 
– Affected soil area 
– Critical load 
Forest ENV6 
Rate 
of 
deforestation 
attributed to 
energy use 
– Forest area at two different 
times 
– Biomass utilization 
ENV7 
Ratio of solid 
waste 
generation to 
units of energy 
produced 
– Amount of solid waste 
– Energy produced 
ENV8 
Ratio of solid 
waste properly 
disposed of to 
total generated 
solid waste 
– Amount of solid waste 
properly disposed of 
– Total amount of solid waste 
Land 
Solid Waste 
Generation 
and 
Management 
ENV9 
Ratio of solid 
radioactive 
waste to units of 
energy produced
– Amount of radioactive waste 
(cumulative for a selected 
period of time) 
– Energy produced 


15 
Environmental
 
Theme Sub-theme 
Energy 
Indicator 
Components 
ENV10 Ratio of solid 
radioactive 
waste awaiting 
disposal to total 
generated solid 
radioactive 
waste 
– Amount of radioactive waste 
awaiting disposal 
– Total volume of radioactive 
waste 
3.1 
The Indicators as a Measure of Progress 
Some of these indicators are unequivocal measures of progress; they clearly 
distinguish between desirable and undesirable trends. Most of the social and 
environmental indicators fall into this category, including such indicators as SOC4 
(accident fatalities), ENV3 (air pollutant emissions from energy systems) and ENV6 
(rate of deforestation attributed to energy use). However, some of these indicators also 
must be taken in context; for example, depending on the development choices made
there may be a temporary rise in undesirable effects until a higher level of 
development is achieved, representing a larger benefit that could outweigh the interim 
disadvantages. Another example is when the availability of commercial fuels — for 
example, kerosene — in developing countries increases the share of a household’s 
income spent on energy (SOC2). This may not indicate a negative development from 
a social perspective, since the collection of non-commercial fuelwood often involves 
significant losses of productive time and the burning of the wood often has important 
health consequences. 
Other indicators are not designed to distinguish between ‘good’ and ‘bad’ but rather 
describe and give an indication of an aspect of energy use. Most of the economic 
indicators fall into this category. They include ECO1 (energy use per capita) and 
ECO3 (efficiency of energy conversion and distribution). Energy use per capita might 
be low in a given country because that country is very poor or because there is high 
energy efficiency and the economy is based on services rather than on heavy industry. 
The ratio of final to primary energy might be high because the country has a 
rudimentary energy system where primary and final energy are the same, or it might 
be high because the country has an advanced economy and efficient energy 
transformation. 
The indicators need to be read in the context of each country’s economy and energy 
resources. An economy that is dominated by primary extraction and processing will 
have relatively high energy use per unit of gross domestic product (GDP) no matter 
how efficient it is. This does not mean that the country should abandon development 
of its resource base. 
Structural changes to the economy must also be taken into account. For example, 
building a large, modern aluminium smelter in a country that previously relied on 
subsistence farming and foreign aid would result in a large increase in the ECO6 
indicator (industrial energy intensities), but would also generate export revenues and 
hence improve income levels. 


16 
Nonetheless, the indicators taken together and in context, allowing for inherent 
differences between countries, give a good picture of a country’s energy system. As 
the indicators change over time, they will be good markers of progress and underlying 
changes. This will guide policy and help guide decisions on investments in energy, 
pollution control and industry. 
Finally, the use of indicators can help answer questions about external costs, which 
are often difficult to quantify. Energy markets can and do accommodate the 
internalization of some of the ‘external costs’ of energy through more or less efficient 
responses to more or less correct economic and regulatory incentives. However, some 
external costs are difficult to internalize, with the result that they will be borne by 
society. Such externalities include ill health, environmental damage and decline in 
property values caused by oil refineries, power lines and other energy facilities. 
What cost is placed on a tonne of nitrous oxides emitted from a gas or coal power 
station, a tonne of radioactive waste from a nuclear power station or a landscape 
disrupted by wind turbines? What penalties or subsidies
1
does one give to each energy 
technology? By quantifying energy intensity, accidents per unit of energy and 
environmental consequences per unit of energy, indicators can permit comparative 
assessment of alternatives and strategies, and help policymakers to decide on 
appropriate measures, including penalties or subsidies, to promote efficient and 
sustainable energy development. Indicators to reflect the extent of internalization of 
external costs are being developed and may be incorporated into the EISD in due 
time. 

Yüklə 0,94 Mb.

Dostları ilə paylaş:
1   ...   10   11   12   13   14   15   16   17   ...   159




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin