Development of novel plastic scintillators based on polyvinyltoluene for the hybrid j-pet/mr tomograph



Yüklə 3,22 Mb.
Pdf görüntüsü
səhifə9/53
tarix17.07.2023
ölçüsü3,22 Mb.
#136775
1   ...   5   6   7   8   9   10   11   12   ...   53
3.1. Scintillation process 
 
The mechanism of scintillation in plastic scintillators is fluorescence. In Fig. 4 the 
typical energy level diagram in organic scintillators is shown. 
Figure 4 Scheme of the singlet energy level diagram of organic scintillators [33]. 
 
Ionising radiation, incident on the scintillator is partially absorbed and emitted via 
fluorescence. In this process, the absorbed energy is instantaneously converted to the 
emitted energy - the decay time in organic scintillators is equal to 10
-10
- 10
-7
s. 
Fluorescence bands are placed within larger wavelengths in comparison to the incident 
radiation because emission transition occurs after releasing a part of oscillation energy to 
the surroundings.
Molecules have particular system of energy levels (see Fig. 4): electron, oscillation 
and rotation. Absorbing the energy, the molecule proceeds to one of the excited states. The 
excess of the energy can be lost in few ways.
The energy of incident radiation is transferred to particular atoms, causing an 
electron transition from the basic S
0
state to the excited state S
1
or higher, depending on the 
energy. Non-radiative transitions occur quickly between vibrational states of S
1
(green 
dashed lines in Fig. 4). Electrons fall from S
1
vibrational states to S
1
basic state is 
favourable for scintillators. Then, there is an electron transition from S
1
to S
0
state. The 
excess of the energy is radiated as fluorescence photons within UV or visible wavelengths.


16 
For scintillation detectors, the transition from S
1
vibrational states to S
1
base level is 
favourable. In such decay electrons loose a part of energy. This is a reason of difference 
between the absorbed and emitted energy. As a consequence, the absorption and emission 
spectra of scintillating materials are shifted as a function of light wavelength. The 
difference between the wavelength of the maximum of absorption and the maximum of 
fluorescence is called Stokes shift. Scintillators are materials with particularly large Stokes
shift and therefore the re-absorption of scinitllating light is unlikely [33]. 
The base of plastic scintillator is polymerizable liquid like styrene or vinyltoluene. 
This substances scintillate in UV, however the mean free path of produced photons is too 
short. Therefore scintillation additives are used. Additives (fluors) absorb the primary light 
from the base and emit it in longer wavelengths. One or more fluors can be used, 
depending on the desired wavelength of emitted photons.
Typical plastic scintillators are ternary systems, consisting of three components: 
polymeric base, primary fluor and secondary fluor, so called wavelength shifter
(WLS) [35]. The scheme of mechanism of the energy transfer in plastic scintillator is 
shown in Fig. 5. Three components of the plastic scintillators are shown in block scheme in 
particular sequence, however the scintillator is a homogeneous mixture of these chemical 
compounds. 

Yüklə 3,22 Mb.

Dostları ilə paylaş:
1   ...   5   6   7   8   9   10   11   12   ...   53




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin