a) to’g’ridan-to’g’ri bajarish – diff(f,x), bu yerda f – differensial-lanayotgan funksiya, x – differensiallash amalga oshirilayotgan o’zgaruvchining nomi.
b) amalga oshirishni bekor qilish – Diff(f,x), bu yerda buyruq parametrlari yuqoridagidek. Bu buyruqning bajarilishi hosilani analitik yozuv ko’ri-nishida ifodalaydi.
Differensiallashdan keyin hosil bo’lgan ifodani soddalashtirish maqsadga muvofiq bo’ladi. Buning uchun sizga natija qanday ko’rinishda kerakligiga qarab simplify, factor yoki expand buyruqlari ishlatiladi.
Masalan:
> Diff(sin(x^2),x)=diff(sin(x^2),x);
Yuqori tartibli hosilalarni hisoblashda parametrda x$n ni ko’rsatish kerak bo’ladi, bu yerda n – hosila tartibi, masalan:
Diff(cos(2*x)^2,x$4)=diff(cos(2*x)^2,x$4);
Olingan ifodani ikki xil usul bilan soddalashtirish mumkin:
Differensiallash operatori.
Differensiallash operatorini aniqlash uchun quyidagi buyruq ishlatiladi: D(f) – f-funksiya. Masalan:> D(sin);
cos
Berilgan nuqtada hosilani hisoblash:
> D(sin)(Pi):eval(%);
-1
Differensiallash operatori funksional operatorlarga qo’llaniladi.
> f:=x-> ln(x^2)+exp(3*x):
Misol.
1. f(x) = sin32x – cos32x hosilasini hisoblang.
> Diff(sin(2*x)^3-cos(2*x)^3,x)=diff(sin(2*x)^3-cos(2*x)^3,x);
2. Hisoblang . Quyidagilarni tering:
> Diff(exp(x)*(x^2-1),x$24)=diff(exp(x)*(x^2-1),x$24): collect(%,exp(x));
3. x=π /2 va x=π nuqtalarda y = sin2 x / (2 + sin(x)) fuknksiyaning ikkinchi hosilasini hisoblang.
> y:=sin(x)^2/(2+sin(x)): d2:=diff(y,x$2): x:=Pi; d2y(x)=d2;
x:=p d2y(p )=1
Xususiy hosilalar.
f(x1,…, xm) funksiyaning xususiy hosilasini hisoblash uchun bizga ma’lum bo’lgan diff buyrug’idan foydalaniladi. Bunday holda bu buyruq quyidagicha ko’rinishga ega bo’ladi: diff(f,x1$n1,x2$n2,…, xm$nm), bu yerda x1,…, xm – differen-siallash amalga oshiriladigan o’zgaruvchilar, $ belgidan keyin mos differensiallash tartibi ko’rsatilgan. Masalan, xususiy hosila quyidagicha yoziladi: diff(f,x,y).
http://hozir.org
Dostları ilə paylaş: |