bo`lsa, y holda biror nomerdan boshlab xn >p (xn bo`ladi. Isbot. a>p bo`lsin, ni 0< tengsizlikni qanoatlantiradigan qilib olamiz. xn=a bo`lganidan >0 uchun n0 natural son topilib, n>n0 larda a- n bo`ladi. dan a- >p bo`lib, xn>p ekanligi kelib chiqadi. ( a hol ham shu kabi qaraladi). Natija. Agar xn=a va a>0 (a<0) bo`lsa, u holda biror nomerdan boshlab xn>0 (xn<0) bo`ladi. 20. Yaqinlashuvchi ketma-ketlik yagona limitga ega. Isbot. Faraz qilaylik (xn) ketma-ketlik a va b limitlarga ega bo`lsin, bunda a. Haqiqiy sonlar to`plamining zichlik xossasiga binoan shunday r son mavjud bo`lib, a bo`ladi. xn=a, a bo`lganligi uchun biror n1 nomerdan boshlab, xnn=b, b>r bo`lganligi uchun biror n2 nomerdan boshlab xn>r bo`ladi. n0=max{n1,n2} deb olsak, n>n0 larda xn va xn>r kelib chiqadi. Bu qarama-qarshilik farazimizning noto`g`ri ekanligini ko`rsatadi. 20. Yaqinlashuvchi ketma-ketlik chegaralangan bo`ladi, yani M son mavjud bo`lib, barcha n lar uchun | xn | tengsizlik o`rinlidir. Isbot. xn=a bo`lsin. Biror >0 son olaylik. U holda biror nomerdan boshlab a- n tengsizlik o`rinli bo`ladi. |x1|, |x2|, …, | |, |a- |, |a+ | sonlarning eng kattasini M desak, ixtiyoriy n lar uchun |xn| ekanligi kelib chiqadi. Bundan (xn) ketma-ketlikning chegaralanganligi kelib chiqadi. 1. Agar barcha n lar uchun xn=yn bo`lib, xn=a, yn=b bo`lsa, u holda a=b bo`ladi. Isboti limitning yagonaligidan kelib chiqadi. 2. Agar barcha n lar uchun xn>yn bo`lib, xn=a, yn=b bo`lsa, u holda a b bo`ladi. Isbot. Faraz qilaylik a>b bo`lsin. a va b sonlar orasida r son olsak, a>r>b, xn=a, a>r bo`lgani uchun biror n1, nomerdan boshlab xn>r, yn=b, b<r bo`lgani uchun biror n2 nomerdan boshlab yn bo`ladi. n0=max{n1,n2} deb olsak, n>n0 larda xn>r va yn kelib chiqadi. Bundan xn>yn bo`ladi. Bu qarama-qarshilik farazimizning noto`g`ri ekanligini ko`rsatadi. 3.Agar barcha n lar uchun xn n < zn bo`lib, xn= zn=a bo`lsa, u holda yn=a bo`ladi.(isbotlang) Teorema'>2.3.Tenglik va tengsizlikda limitga o`tish Teorema. Agar (x n) va (y n) ketma-ketliklar yaqinlashuvchi bo`lsa, u holda (xn yn) ketma-ketliklar yaqinlashuvchi bo`lib, (xnyn)= xn yn tenglik o`rinli . Isbot. xn =a, yn =b desak, u holda xn=a+ n, yn=b+ n deb olish mumkin, bu yerda n va n lar cheksiz kichik miqdorlar. xnyn=(a+ n) (b+ n)=ab+ n n =ab+ n, bunda n= n n - 1 – lemmaga asosan cheksiz kichik miqdor. Demak, (xnyn)=ab= xn yn. Teorema. Agar (xn) va (yn) ketma-ketliklar yaqinlashuvchi bo`lsa, (xnyn) ketma-ketlik ham yaqinlashuvchi bo`lib, (xnyn)= xn yn tenglik o`rinli . Isbot. Oldingi teorema isbotidagi belgilashlarni kiritsak xnyn=(a+ n) (b+ n)=ab+a n+b n + n n =ab+ n, bunda n= a n+b n + n n - 1,2 – lemmalarga asosan cheksiz kichik miqdor. Demak, (xnyn)=ab= xn yn. Teorema. Agar (xn) va (yn) ketma-ketliklar yaqinlashuvchi va yn 0 bo`lsa, ( ) ketma-ketlik ham yaqinlashuvchi bo`lib, tenglik o`rinli . Tеоrеmа: Аgаr {xn} kеtmа-kеtlik mоnоtоn o`suvchi bo`lib u yuqоridаn chеgаrаlаngаn bo`lsа, u chеkli limitgа egа bo`lаdi. Isbоti: Tеоrеmа shаrtigа ko`rа {xn} kеtmа-kеtligimiz yuqоridаn chеgаrаlаngаni uchun u o`zining аniq yuqоri chеgаrаsigа egа bo`lаdi. Fаrаz qilаylik a sоni {xn} kеtmа-kеtlikning аniq yuqоri chеgаrаsi bo`lsin, u hоldа (“Suprеmum”) sup{xn}=a Аgаr a sоni {xn} kеtmа-kеtlikning аniq yuqоri chеgаrаsi bo`lsа quyidаgi ikkitа shаrt bаjаrilаr edi. 1. xna 2. >0, N n>N bo`lgаndа a-Na bo`lаr edi. Tеоrеmа shаrtigа ko`rа kеtmа - kеtlik o`suvchi bo`lgаnligi uchun xN < xn bo`lаdi. Mоnоtоn o`suvchi bo`lgаnligidаn а- < xN a tеngsizlik o`rinli bo`lаdi. Bu tеngsizlikdаn a-n dеb yozishimiz mumkin yoki a-xn< yoki xn-a< bo`lаdi. Bu dеgаn so`z kеtmа - kеtlik limitining tа`rifigа ko`rа dеgаnidir. X to`plamdan x0єX nuqtani olib, (1) ketma-ketlik har bir hadining shu nuqtadagi qiymatini hisoblab, natijada f1(x0), f2(x0), …, fn(x0), … (2) sonlar ketma-ketligini hosil qilamiz. Ta`rif. Agar {fn(x0)} sonlar ketma-ketligi yaqinlashuvchi (uzoqlashuvchi) bo`lsa, u holda {fn(x)} funksional ketma-ketlik x0 nuqtada yaqinlashuvchi (uzoqlashuvchi) deyiladi. Ta`rif. Agar {fn(x)} funksional ketma-ketlik X to`plamining har bir nuqtasida yaqinlashuvchi (uzoqlashuvchi) bo`lsin, u holda u X to`plamda yaqinlashuvchi (uzoqlashuvchi) deyiladi. Ba`zi hollarda funksional ketma-ketlikning yaqinlashish sohasi aniqlanish sohasiga teng yoki uning bir qismi yoki bo`sh to`plam bo`lishi mumkin. Aytaylik, X to`plam (XcR) {fn(x)} funksional ketma-ketlikning yaqinlashish sohasi bo`lsin. Unda X to`plamdan olingan har bir X nuqtada funksional ketma-ketlik sonlar ketma-ketligiga aylanib, u yaqinlashuvchi, ya`ni chekli limit ga ega bo`ladi. X to`plamdan olingan har bir X ga unga mos keladigan sonli [0, )ning chekli limitini mos qo`ysak, unda funksiyaga ega bo`lamiz. Unda {fn(x)} funksional [0, ) ning limiti funksiyasi deyiladi: =f(x) (3). Bu holda {fn(x)} funksional ketma-ketlik X sohada (X sohaning har bir nuqtasida) f(x) ga yaqinlashadi deyiladi. Boshqacha aytganda, har qanday E>0 son hamda har qanday x(xєX) nuqta olganda ham shunday n natural son n (u olingan E va x larga bog`liq) topiladiki, barcha n>N uchun (4) tengsizlik bajariladi. Ta`rif. Agar son olganda ham, faqat E ga bog`liq shunday n0 natural son topilsaki, barcha n>N uchun tengsizlik bajarilsa, {fn(x)} funksional ketma-ketlik X to`plamda f(x) ga tekis yaqinlashadi deyiladi. Biror X to`plamda (XcR) f1(x), f2(x),…,fn(x),… (1) funksional ketma-ketlik berilgan bo`lsin. Ta`rif. (1) ketma-ketlik hadlarida tashkil topgan (2) ifoda funksional qator deyiladi. Bunda, f1(x), f2(x),… funksiyalar (2) qatorning hadlari fn(x) esa uning umumiy hadi deyiladi. (2) funksional qator hadlari yordamida tuzulgan ushbu: S1(x)=f1(x) S2(x)=f1(x)+f2(x) ……………….. Sn(x)=f1(x)+f2(x)+…+fn(x) Yig`indilar ketma-ketligi funksional qatorning qismiy yig`indilar ketma-ketligi deyiladi. Shuni takidlash lozimki, funksional qatorlarni o`rganish, funksional ketma-ketliklarni o`rganishga ekvivalent. Ta`rif. Agar da {Sn(x)} funksional ketma-ketlik x0 nuqtada (x0єX) yaqinlashuvchi (uzoqlashuvchi) bo`lsa, (2) funksional qator x0 nuqtada yaqinlashuvchi (uzoqlashuvchi) deyiladi.. Yüklə 378,5 Kb.Dostları ilə paylaş:
bo`ladi. Isbot. a>p bo`lsin, ni 0< tengsizlikni qanoatlantiradigan qilib olamiz. xn=a bo`lganidan >0 uchun n0 natural son topilib, n>n0 larda a- n bo`ladi. dan a- >p bo`lib, xn>p ekanligi kelib chiqadi. ( a hol ham shu kabi qaraladi). Natija. Agar xn=a va a>0 (a<0) bo`lsa, u holda biror nomerdan boshlab xn>0 (xn<0) bo`ladi. 20. Yaqinlashuvchi ketma-ketlik yagona limitga ega. Isbot. Faraz qilaylik (xn) ketma-ketlik a va b limitlarga ega bo`lsin, bunda a. Haqiqiy sonlar to`plamining zichlik xossasiga binoan shunday r son mavjud bo`lib, a bo`ladi. xn=a, a bo`lganligi uchun biror n1 nomerdan boshlab, xnn=b, b>r bo`lganligi uchun biror n2 nomerdan boshlab xn>r bo`ladi. n0=max{n1,n2} deb olsak, n>n0 larda xn va xn>r kelib chiqadi. Bu qarama-qarshilik farazimizning noto`g`ri ekanligini ko`rsatadi. 20. Yaqinlashuvchi ketma-ketlik chegaralangan bo`ladi, yani M son mavjud bo`lib, barcha n lar uchun | xn | tengsizlik o`rinlidir. Isbot. xn=a bo`lsin. Biror >0 son olaylik. U holda biror nomerdan boshlab a- n tengsizlik o`rinli bo`ladi. |x1|, |x2|, …, | |, |a- |, |a+ | sonlarning eng kattasini M desak, ixtiyoriy n lar uchun |xn| ekanligi kelib chiqadi. Bundan (xn) ketma-ketlikning chegaralanganligi kelib chiqadi. 1. Agar barcha n lar uchun xn=yn bo`lib, xn=a, yn=b bo`lsa, u holda a=b bo`ladi. Isboti limitning yagonaligidan kelib chiqadi. 2. Agar barcha n lar uchun xn>yn bo`lib, xn=a, yn=b bo`lsa, u holda a b bo`ladi. Isbot. Faraz qilaylik a>b bo`lsin. a va b sonlar orasida r son olsak, a>r>b, xn=a, a>r bo`lgani uchun biror n1, nomerdan boshlab xn>r, yn=b, b<r bo`lgani uchun biror n2 nomerdan boshlab yn bo`ladi. n0=max{n1,n2} deb olsak, n>n0 larda xn>r va yn kelib chiqadi. Bundan xn>yn bo`ladi. Bu qarama-qarshilik farazimizning noto`g`ri ekanligini ko`rsatadi. 3.Agar barcha n lar uchun xn n < zn bo`lib, xn= zn=a bo`lsa, u holda yn=a bo`ladi.(isbotlang) Teorema'>2.3.Tenglik va tengsizlikda limitga o`tish Teorema. Agar (x n) va (y n) ketma-ketliklar yaqinlashuvchi bo`lsa, u holda (xn yn) ketma-ketliklar yaqinlashuvchi bo`lib, (xnyn)= xn yn tenglik o`rinli . Isbot. xn =a, yn =b desak, u holda xn=a+ n, yn=b+ n deb olish mumkin, bu yerda n va n lar cheksiz kichik miqdorlar. xnyn=(a+ n) (b+ n)=ab+ n n =ab+ n, bunda n= n n - 1 – lemmaga asosan cheksiz kichik miqdor. Demak, (xnyn)=ab= xn yn. Teorema. Agar (xn) va (yn) ketma-ketliklar yaqinlashuvchi bo`lsa, (xnyn) ketma-ketlik ham yaqinlashuvchi bo`lib, (xnyn)= xn yn tenglik o`rinli . Isbot. Oldingi teorema isbotidagi belgilashlarni kiritsak xnyn=(a+ n) (b+ n)=ab+a n+b n + n n =ab+ n, bunda n= a n+b n + n n - 1,2 – lemmalarga asosan cheksiz kichik miqdor. Demak, (xnyn)=ab= xn yn. Teorema. Agar (xn) va (yn) ketma-ketliklar yaqinlashuvchi va yn 0 bo`lsa, ( ) ketma-ketlik ham yaqinlashuvchi bo`lib, tenglik o`rinli . Tеоrеmа: Аgаr {xn} kеtmа-kеtlik mоnоtоn o`suvchi bo`lib u yuqоridаn chеgаrаlаngаn bo`lsа, u chеkli limitgа egа bo`lаdi. Isbоti: Tеоrеmа shаrtigа ko`rа {xn} kеtmа-kеtligimiz yuqоridаn chеgаrаlаngаni uchun u o`zining аniq yuqоri chеgаrаsigа egа bo`lаdi. Fаrаz qilаylik a sоni {xn} kеtmа-kеtlikning аniq yuqоri chеgаrаsi bo`lsin, u hоldа (“Suprеmum”) sup{xn}=a Аgаr a sоni {xn} kеtmа-kеtlikning аniq yuqоri chеgаrаsi bo`lsа quyidаgi ikkitа shаrt bаjаrilаr edi. 1. xna 2. >0, N n>N bo`lgаndа a-Na bo`lаr edi. Tеоrеmа shаrtigа ko`rа kеtmа - kеtlik o`suvchi bo`lgаnligi uchun xN < xn bo`lаdi. Mоnоtоn o`suvchi bo`lgаnligidаn а- < xN a tеngsizlik o`rinli bo`lаdi. Bu tеngsizlikdаn a-n dеb yozishimiz mumkin yoki a-xn< yoki xn-a< bo`lаdi. Bu dеgаn so`z kеtmа - kеtlik limitining tа`rifigа ko`rа dеgаnidir. X to`plamdan x0єX nuqtani olib, (1) ketma-ketlik har bir hadining shu nuqtadagi qiymatini hisoblab, natijada f1(x0), f2(x0), …, fn(x0), … (2) sonlar ketma-ketligini hosil qilamiz. Ta`rif. Agar {fn(x0)} sonlar ketma-ketligi yaqinlashuvchi (uzoqlashuvchi) bo`lsa, u holda {fn(x)} funksional ketma-ketlik x0 nuqtada yaqinlashuvchi (uzoqlashuvchi) deyiladi. Ta`rif. Agar {fn(x)} funksional ketma-ketlik X to`plamining har bir nuqtasida yaqinlashuvchi (uzoqlashuvchi) bo`lsin, u holda u X to`plamda yaqinlashuvchi (uzoqlashuvchi) deyiladi. Ba`zi hollarda funksional ketma-ketlikning yaqinlashish sohasi aniqlanish sohasiga teng yoki uning bir qismi yoki bo`sh to`plam bo`lishi mumkin. Aytaylik, X to`plam (XcR) {fn(x)} funksional ketma-ketlikning yaqinlashish sohasi bo`lsin. Unda X to`plamdan olingan har bir X nuqtada funksional ketma-ketlik sonlar ketma-ketligiga aylanib, u yaqinlashuvchi, ya`ni chekli limit ga ega bo`ladi. X to`plamdan olingan har bir X ga unga mos keladigan sonli [0, )ning chekli limitini mos qo`ysak, unda funksiyaga ega bo`lamiz. Unda {fn(x)} funksional [0, ) ning limiti funksiyasi deyiladi: =f(x) (3). Bu holda {fn(x)} funksional ketma-ketlik X sohada (X sohaning har bir nuqtasida) f(x) ga yaqinlashadi deyiladi. Boshqacha aytganda, har qanday E>0 son hamda har qanday x(xєX) nuqta olganda ham shunday n natural son n (u olingan E va x larga bog`liq) topiladiki, barcha n>N uchun (4) tengsizlik bajariladi. Ta`rif. Agar son olganda ham, faqat E ga bog`liq shunday n0 natural son topilsaki, barcha n>N uchun tengsizlik bajarilsa, {fn(x)} funksional ketma-ketlik X to`plamda f(x) ga tekis yaqinlashadi deyiladi. Biror X to`plamda (XcR) f1(x), f2(x),…,fn(x),… (1) funksional ketma-ketlik berilgan bo`lsin. Ta`rif. (1) ketma-ketlik hadlarida tashkil topgan (2) ifoda funksional qator deyiladi. Bunda, f1(x), f2(x),… funksiyalar (2) qatorning hadlari fn(x) esa uning umumiy hadi deyiladi. (2) funksional qator hadlari yordamida tuzulgan ushbu: S1(x)=f1(x) S2(x)=f1(x)+f2(x) ……………….. Sn(x)=f1(x)+f2(x)+…+fn(x) Yig`indilar ketma-ketligi funksional qatorning qismiy yig`indilar ketma-ketligi deyiladi. Shuni takidlash lozimki, funksional qatorlarni o`rganish, funksional ketma-ketliklarni o`rganishga ekvivalent. Ta`rif. Agar da {Sn(x)} funksional ketma-ketlik x0 nuqtada (x0єX) yaqinlashuvchi (uzoqlashuvchi) bo`lsa, (2) funksional qator x0 nuqtada yaqinlashuvchi (uzoqlashuvchi) deyiladi.. Yüklə 378,5 Kb.Dostları ilə paylaş:
hol ham shu kabi qaraladi). Natija. Agar xn=a va a>0 (a<0) bo`lsa, u holda biror nomerdan boshlab xn>0 (xn<0) bo`ladi. 20. Yaqinlashuvchi ketma-ketlik yagona limitga ega. Isbot. Faraz qilaylik (xn) ketma-ketlik a va b limitlarga ega bo`lsin, bunda a. Haqiqiy sonlar to`plamining zichlik xossasiga binoan shunday r son mavjud bo`lib, a bo`ladi. xn=a, a bo`lganligi uchun biror n1 nomerdan boshlab, xnn=b, b>r bo`lganligi uchun biror n2 nomerdan boshlab xn>r bo`ladi. n0=max{n1,n2} deb olsak, n>n0 larda xn va xn>r kelib chiqadi. Bu qarama-qarshilik farazimizning noto`g`ri ekanligini ko`rsatadi. 20. Yaqinlashuvchi ketma-ketlik chegaralangan bo`ladi, yani M son mavjud bo`lib, barcha n lar uchun | xn | tengsizlik o`rinlidir. Isbot. xn=a bo`lsin. Biror >0 son olaylik. U holda biror nomerdan boshlab a- n tengsizlik o`rinli bo`ladi. |x1|, |x2|, …, | |, |a- |, |a+ | sonlarning eng kattasini M desak, ixtiyoriy n lar uchun |xn| ekanligi kelib chiqadi. Bundan (xn) ketma-ketlikning chegaralanganligi kelib chiqadi. 1. Agar barcha n lar uchun xn=yn bo`lib, xn=a, yn=b bo`lsa, u holda a=b bo`ladi. Isboti limitning yagonaligidan kelib chiqadi. 2. Agar barcha n lar uchun xn>yn bo`lib, xn=a, yn=b bo`lsa, u holda a b bo`ladi. Isbot. Faraz qilaylik a>b bo`lsin. a va b sonlar orasida r son olsak, a>r>b, xn=a, a>r bo`lgani uchun biror n1, nomerdan boshlab xn>r, yn=b, b<r bo`lgani uchun biror n2 nomerdan boshlab yn bo`ladi. n0=max{n1,n2} deb olsak, n>n0 larda xn>r va yn kelib chiqadi. Bundan xn>yn bo`ladi. Bu qarama-qarshilik farazimizning noto`g`ri ekanligini ko`rsatadi. 3.Agar barcha n lar uchun xn n < zn bo`lib, xn= zn=a bo`lsa, u holda yn=a bo`ladi.(isbotlang) Teorema'>2.3.Tenglik va tengsizlikda limitga o`tish Teorema. Agar (x n) va (y n) ketma-ketliklar yaqinlashuvchi bo`lsa, u holda (xn yn) ketma-ketliklar yaqinlashuvchi bo`lib, (xnyn)= xn yn tenglik o`rinli . Isbot. xn =a, yn =b desak, u holda xn=a+ n, yn=b+ n deb olish mumkin, bu yerda n va n lar cheksiz kichik miqdorlar. xnyn=(a+ n) (b+ n)=ab+ n n =ab+ n, bunda n= n n - 1 – lemmaga asosan cheksiz kichik miqdor. Demak, (xnyn)=ab= xn yn. Teorema. Agar (xn) va (yn) ketma-ketliklar yaqinlashuvchi bo`lsa, (xnyn) ketma-ketlik ham yaqinlashuvchi bo`lib, (xnyn)= xn yn tenglik o`rinli . Isbot. Oldingi teorema isbotidagi belgilashlarni kiritsak xnyn=(a+ n) (b+ n)=ab+a n+b n + n n =ab+ n, bunda n= a n+b n + n n - 1,2 – lemmalarga asosan cheksiz kichik miqdor. Demak, (xnyn)=ab= xn yn. Teorema. Agar (xn) va (yn) ketma-ketliklar yaqinlashuvchi va yn 0 bo`lsa, ( ) ketma-ketlik ham yaqinlashuvchi bo`lib, tenglik o`rinli . Tеоrеmа: Аgаr {xn} kеtmа-kеtlik mоnоtоn o`suvchi bo`lib u yuqоridаn chеgаrаlаngаn bo`lsа, u chеkli limitgа egа bo`lаdi. Isbоti: Tеоrеmа shаrtigа ko`rа {xn} kеtmа-kеtligimiz yuqоridаn chеgаrаlаngаni uchun u o`zining аniq yuqоri chеgаrаsigа egа bo`lаdi. Fаrаz qilаylik a sоni {xn} kеtmа-kеtlikning аniq yuqоri chеgаrаsi bo`lsin, u hоldа (“Suprеmum”) sup{xn}=a Аgаr a sоni {xn} kеtmа-kеtlikning аniq yuqоri chеgаrаsi bo`lsа quyidаgi ikkitа shаrt bаjаrilаr edi. 1. xna 2. >0, N n>N bo`lgаndа a-Na bo`lаr edi. Tеоrеmа shаrtigа ko`rа kеtmа - kеtlik o`suvchi bo`lgаnligi uchun xN < xn bo`lаdi. Mоnоtоn o`suvchi bo`lgаnligidаn а- < xN a tеngsizlik o`rinli bo`lаdi. Bu tеngsizlikdаn a-n dеb yozishimiz mumkin yoki a-xn< yoki xn-a< bo`lаdi. Bu dеgаn so`z kеtmа - kеtlik limitining tа`rifigа ko`rа dеgаnidir. X to`plamdan x0єX nuqtani olib, (1) ketma-ketlik har bir hadining shu nuqtadagi qiymatini hisoblab, natijada f1(x0), f2(x0), …, fn(x0), … (2) sonlar ketma-ketligini hosil qilamiz. Ta`rif. Agar {fn(x0)} sonlar ketma-ketligi yaqinlashuvchi (uzoqlashuvchi) bo`lsa, u holda {fn(x)} funksional ketma-ketlik x0 nuqtada yaqinlashuvchi (uzoqlashuvchi) deyiladi. Ta`rif. Agar {fn(x)} funksional ketma-ketlik X to`plamining har bir nuqtasida yaqinlashuvchi (uzoqlashuvchi) bo`lsin, u holda u X to`plamda yaqinlashuvchi (uzoqlashuvchi) deyiladi. Ba`zi hollarda funksional ketma-ketlikning yaqinlashish sohasi aniqlanish sohasiga teng yoki uning bir qismi yoki bo`sh to`plam bo`lishi mumkin. Aytaylik, X to`plam (XcR) {fn(x)} funksional ketma-ketlikning yaqinlashish sohasi bo`lsin. Unda X to`plamdan olingan har bir X nuqtada funksional ketma-ketlik sonlar ketma-ketligiga aylanib, u yaqinlashuvchi, ya`ni chekli limit ga ega bo`ladi. X to`plamdan olingan har bir X ga unga mos keladigan sonli [0, )ning chekli limitini mos qo`ysak, unda funksiyaga ega bo`lamiz. Unda {fn(x)} funksional [0, ) ning limiti funksiyasi deyiladi: =f(x) (3). Bu holda {fn(x)} funksional ketma-ketlik X sohada (X sohaning har bir nuqtasida) f(x) ga yaqinlashadi deyiladi. Boshqacha aytganda, har qanday E>0 son hamda har qanday x(xєX) nuqta olganda ham shunday n natural son n (u olingan E va x larga bog`liq) topiladiki, barcha n>N uchun (4) tengsizlik bajariladi. Ta`rif. Agar son olganda ham, faqat E ga bog`liq shunday n0 natural son topilsaki, barcha n>N uchun tengsizlik bajarilsa, {fn(x)} funksional ketma-ketlik X to`plamda f(x) ga tekis yaqinlashadi deyiladi. Biror X to`plamda (XcR) f1(x), f2(x),…,fn(x),… (1) funksional ketma-ketlik berilgan bo`lsin. Ta`rif. (1) ketma-ketlik hadlarida tashkil topgan (2) ifoda funksional qator deyiladi. Bunda, f1(x), f2(x),… funksiyalar (2) qatorning hadlari fn(x) esa uning umumiy hadi deyiladi. (2) funksional qator hadlari yordamida tuzulgan ushbu: S1(x)=f1(x) S2(x)=f1(x)+f2(x) ……………….. Sn(x)=f1(x)+f2(x)+…+fn(x) Yig`indilar ketma-ketligi funksional qatorning qismiy yig`indilar ketma-ketligi deyiladi. Shuni takidlash lozimki, funksional qatorlarni o`rganish, funksional ketma-ketliklarni o`rganishga ekvivalent. Ta`rif. Agar da {Sn(x)} funksional ketma-ketlik x0 nuqtada (x0єX) yaqinlashuvchi (uzoqlashuvchi) bo`lsa, (2) funksional qator x0 nuqtada yaqinlashuvchi (uzoqlashuvchi) deyiladi..