Сборник задач по высшей алгебре. М., Наука, 1977. Сборник задач по алгебре под редаксией. А. И. Кострикина, М., Наука, 1985



Yüklə 1,04 Mb.
səhifə11/14
tarix10.05.2022
ölçüsü1,04 Mb.
#57299
növüСборник задач
1   ...   6   7   8   9   10   11   12   13   14
Маъруза 35457

Quyidagi vektorni kiritamiz.

  • Quyidagi vektorni kiritamiz.
  •  
  •  =(
  • .
  • Bu vektorning dastlabki - ta koordinatalarini lar bilan belgilab olsak
  •  
  •  vektorni hosil qilamiz. (5) sistema yechimlarining chiziqli kombinatsiyasidan iborat bo’lganligi uchun u ham shu sistemaning yechimidan iborat bo’ladi. Lekin . vektorda barcha ozod noma’lumlarga mos keluvchi koordinatalar nolga teng. Bu holda (6) sistemaning ham yechimi bo’ladi. (6) sistemaning o’ng tomoni faqat nollardan iborat bo’lib, uning asosiy matrisasining determinanti
  • ,
  • noldan farqli, shu sababli bu holda (6) sistema faqat nol yechimga ega bo’ladi. Demak, vektorning barcha koordinatalari nolga teng ekan. Bu yerdan
  •  
  •  ni hosil qilamiz. Va bu yerdan vektorni topsak, uning vektorlar orqali chiziqli ifodasi hosil bo’ladi:
  •   .
  •  Bu esa vektorlar sistemasining fundamental yechimlar sistemasidan iborat ekanligi kelib chiqadi.
  • Teorema isbot bo’ldi. Teorema isbotidan fundamental yechimlar sistemasini qurish usuli ham kelib chiqadi. Buning uchun umumiy yechimdagi ozod noma’lumlarga navbati bilan birinchisiga 1 qiymatni, qolganlariga esa 0 qiymatni, so’ngra ikkinchisiga 1 qiymatni, qolganlariga esa 0 qiymatni va hakoza, oxirgisiga 1 qiymatni, qolganlariga esa nol qiymatni berib, asosiy noma’lumlarning ham qiymatlarini hisoblash kerak ekan. Umuman olganda, bunday qiymatlarni ham berish shart emas, biror usul bilan yechimlar orasidan chiziqli bog’lanmagan barcha yechim vektorlarni ajratib olish yetarli.

Yüklə 1,04 Mb.

Dostları ilə paylaş:
1   ...   6   7   8   9   10   11   12   13   14




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin