II.BOB. HAQIQIY SON XOSSALARI. II.1Haqiqiy sonlar. Haqiqiy sonlar to’plamining xossalari. 1. To’plam tushunchasi matematikaning asosiy tushunchalaridan biri bo’lib, unga ta’rif berilmaydi. Misollar bilan tushuntiriladi. Masalan: auditoriyadagi talabalar to’plami, unli tovushlar to’plami, natural sonlar to’plami va h.k.z. To’plamni tashkil qiluvchi ob’ektlar to’plam elementi deyiladi. To’plamlar lotin alifbosining bosh harflari bilan: A, B, C, ...; uning elementlari kichik harflari bilan: a, v, s,... belgilanadi. To’plam elementi aÎA ko’rinishda yoziladi va «a element A to’plamga tegishli» deb o’qiladi.
2. Birorta ham elementi bo’lmagan to’plam bo’sh deyiladi va Æ yoki {} ko’rinishda belgilanadi.
Masalan: x2+4=0 tenglamaning haqiqiy ildizlari to’plami, oydagi daraxtlar to’plami, dengiz tubidagi quruq toshlar to’plami bo’sh to’plamlardir.
To’plam chekli sondagi elementlardan tashkil topsa, chekli to’plam deyiladi. Masalan: lotin alifbosi harflari to’plami, kamalak ranglari to’plami, raqamlar to’plami chekli to’plamdir. To’plam elementlari soni cheksiz bo’lsa, bunda to’plam cheksiz to’plam deyiladi. Masalan: barcha natural sonlar to’plami, tekislikdagi nuqtalar to’plami cheksizdir. Bir xil elementlardan tashkil topgan to’plamlar teng to’plamlar deyiladi. Masalan x2-4=0 tenglamaning yechimlari to’plami va |x |=2 tenglamaning yechimlari to’plami tengdir. Agar har bir elementning ma’lum bir to’plamga tegishli yoki tegishli emaslig bir qiymatli aniqlangan bo’lsa, to’plam berildideyiladi.
To’plamlar odatda 2 usulda beriladi: to’plam elementlari ro’yxati keltiriladi.
M: A={a, ye, yo, i, o, u, e, yu, ya, o’}
B={qizil, sariq, yashil}.
S={1, 2, 3, 4, 5, 6, 7, 8, 9}. to’plamga kirgan elementlarning yagona harakteristik xossasi ko’rsatiladi.
M:A- o’zbek alifbosi o’nli harflari to’plami
V- svetofor ranglari to’plami
S- bir xonali natural sonlar to’plami
Sonli to’plamlar uchun harakteristik xossani formula bilan berish qulay.
M: S={s | s£ 9, SÎN}.
X={x|x2-4=0, xÎR}.
Y={y|-2£y£6, yÎZ}. Agar A to’plamning hamma elementi V to’plamga ham tegishli bo’lsa, A to’plam V to’plamning to’plam osti yoki qism to’plami deyiladi va AÌV ko’rinishda yoziladi. AÌA va ÆÌA bo’ladi.
Agar AÌV va VÌA bo’lsa, A=V bo’ladi.
Agar A1, A2,..., An to’plamlar A to’plamning qism to’plami bo’lsa, A to’plam A1, A2,..., An to’plamlar uchun universal to’plam deyiladi. Universal to’plam odatda Y yoki U harflari bilan belgilanadi.
Masalan: N-barcha natural sonlar to’plami,
Z-barcha butun sonlar to’plami,
Q-barcha rats*ional sonlar to’plami,
R-barcha hakikiy sonlar to’plami bo’lib, NÌ ZÌ Q ÌR shartlar bajariladi va R- kolgan sonli to’plamlar uchun universal to’plam vazifasini bajaradi. To’plamlar orasidagi munosabatlarni yaqqolroq tasavvur qilish uchun Eyler-Venn diagrammalaridan foydalaniladi. Bunda to’plamlar doira yoki oval shaklida, universal to’plam esa, to’g’ri to’rtburchak shaklida tasvirlanadi.
M: A Ì V N Ì Z Ì Q ÌR V R Q
A Z N
To’plamlar va ular ustida amallar.
1. A va V to’plamlarning birlashmasi deb, bu to’plamlarning hech bo’lmaganda biriga tegishli bo’lgan elementlar to’plamiga aytiladi va AÈV ko’rinishida belgilanadi.
AÈV={x|xÎA yoki xÎB}.
M: A-barcha juft sonlar to’plami
A={a|a=2n, nÎN}
B-barcha toq sonlar to’plami
V={b|b=2n-1, nÎN} bo’lsa,
AÈV=N bo’ladi. A va V to’plamlarning kesishmasi deb, bu to’plamlarning ikkalasiga ham bir vaqtda tegishli bo’lgan elementlar to’plamiga aytiladi va AÇV ko’rinishda belgilanadi.
AÇV={x|xÎA va xÎV}.
M: A={a|4£a£14, aÎN}
B={b|10AÇB={x|11£ x £14, xÎN} bo’ladi.
To’plamlar kesishmasi ularning umumiy qismidir. Umumiy qismga ega bo’lmagan to’plamlar kesishmasi bo’sh to’plamdir.
AÇB=Æ.
Umumiy qismga ega bo’lgan to’plamlar kesishadi deyiladi va AÇB¹Æ, ya’ni A va V to’plamlar kesishmasi bo’sh emas, deb yoziladi.