The ardl method in the Energy-Growth Nexus Field; Best Implementation Strategies



Yüklə 254,06 Kb.
Pdf görüntüsü
səhifə3/10
tarix02.01.2022
ölçüsü254,06 Kb.
#37593
1   2   3   4   5   6   7   8   9   10
economies-07-00105

2. The Methodology

For reasons of educative demonstration, we assume two series, the Y

t

and the X



t

in this paper but

the reader can easily generalize into more variables. Nevertheless, the production function equation

in the energy-growth nexus, has more variables. In a bivariate energy-growth nexus model, the Y

t

stands for economic growth and the X



t

stands for energy consumption. It is also typical in the energy

growth nexus to use logarithms of the variables in order to translate variable coe

fficients as elasticities.

The series of steps in the ARDL procedure is the investigation of: (i) stationarity, (ii) cointegration, and

last but not least (iii) causality. There are other ways to proceed to causality analysis without the first

two steps, but this occurs within other methodological frameworks.

2.1. Stationarity

After a presentation of the descriptive statistics of the series (mean, median, minimum and maximum

values, skewness, kurtosis, as well as the standard deviation, Bera–Jacque normality test and pairwise

correlation), the first step in the ARDL analysis, is the unit root analysis. It informs about the degree of

integration of each variable. To satisfy the bounds test assumption of the ARDL models, each variable

must be I(0) or I(1). Under no circumstances, should it be I(2).

De Vita et al.

(

2006


) also noted that the

dependent variable should be I(1). However, this is not widely claimed in the current literature. Unit root

analysis is performed with a long array of tests such as for example the augmented Dickey Fuller (ADF)

and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS), the Phillips–Perron (PP), the Ng–Perron test, the

cross-sectional augmented IPS-CIPS (

Pesaran 2007

), the LS (

Lee and Strazicich 2003

), and many others.

Each one is more compatible with different data characteristics, but this paper will not discuss them for

brevity reasons. However, it should be stressed that researchers should apply both the traditional and

structural break unit root tests to make sure that the variables are not I(2).




Economies 2019, 7, 105

3 of 16


2.2. Cointegration

The essence models in the ARDL bounds test framework are the following unrestricted error

correction models:

∆LY


t

=

a



0

+

a



1

t

+



m

X

i=1



α

2i

∆LY



t−i

+

n



X

i=0


a

3i

∆LX



t−i

+

a



4

LY

t−1



+

a

5



LX

t−1


+

µ

1t



(1)

∆LX


t

=

β



0

+

β



1

t

+



m

X

i=1



β

2i

∆LX



t−i

+

n



X

i=0


β

3i

∆LΥ



t−i

+

β



4

LX

t−1



+

β

5



L

Υ

t−1



+

µ

2t



(2)

∆ is the first difference operator, µ is the error term that must be a white noise or put in other

words it represents the residual term which is supposed to be well behaved (serially independent,

homoskedastic and normally distributed). All

α and β coefficients are non-zero with a

4

and



β

4

also being



negative (this represents the speed of adjustment). The parameters

α

2i



and a

3i

represent the short-run



dynamic coe

fficients, while a

4

and a


5

are long-run coe

fficients in the energy-growth nexus relationship.

The a


0

and


β

0

are drift components,



µ

1t

and



µ

2t

are white noise. What type of explanatory variables



must be incorporated in the energy-growth relationship is provided in detail by

Inglesi-Lotz

(

2018


) in a

chapter written specifically on this topic. The interested reader is advised to read that. Generally, one

can decide first on the framework one is going to work, namely whether that is a production function

approach or a demand function approach or others such as the Kuznets curve hypothesis and then

decide on the variables and other components. Other deterministic components are included on a trial

and error basis and to corroborate further the stability of an estimated relationship.

Overall, we observe in Equations (1) and (2) that each variable is represented as dependent on the

past values of itself, the past values of the other variable(s), and the past values of di

fferenced values

of itself and the past values of di

fferenced values of the other variable(s). Models (1) and (2) can be

formulated either as intercept or trend ARDL models, or both. Equations (1) and (2) contain both.

Halicioglu

(

2007



) claims that it is possible to end up with two models, one with trend and one without

a trend. There is a method described in

Bahmani-Oskooee and Goswami

(

2003



), according to which

one ends up with a single long-run relationship through consecutive eliminations of the rest of the

relationships. The first stage of the ARDL estimation produces a

(

p



+

1

)



k

number of regressions so that

the optimal lag length for each variable is obtained, with p being the maximum number of lags and k

is the number of variables in the equation. In our simplistic example, there is only one X

t

variable.



In the framework described in Equations (1) and (2), the ARDL bounds cointegration test is carried out.

These equations are estimated with ordinary least squares (OLS).

2.3. More on the ARDL Analysis

The ARDL analysis occurs as follows: If the existence of cointegration is confirmed in

Equations (1) and (2), then the long-run and the short-run models are estimated and both long

and short-run elasticities are derived, namely the ARDL equivalent of the UECM (Unrestricted error

correction model). Cointegration, in the ARDL bounds test approach, is examined under the following

hypothesis set up:

H

0

: a



1

=

a



2

=

a



n

=

0



H

1

: a



1

, a


2

, a


n

, 0


The setup of the hypotheses reads as follows: there is cointegration if the null hypothesis is

rejected. The F-statistics for testing are compared with the critical values developed by

Pesaran et

al.


(

2001


). Narayan critical values are more appropriate for small samples.

Pesaran et al.

(

2001


)

provide a table enumerated as CI and entitled: “Asymptotic critical value bounds for the F-statistic.

Testing for the existence of a levels relationship” in five versions. These are (i) no intercept and no

trend, (ii) restricted intercept and no trend, (iii) unrestricted intercept and no trend, (iv) unrestricted




Economies 2019, 7, 105

4 of 16


intercept and restricted trend, (v) unrestricted intercept and unrestricted trend. They also provide a

table CII entitled “Asymptotic critical value bounds for the t-statistic. Testing for the existence of a levels

relationship” in three versions: (i) No intercept and no trend, (ii) unrestricted intercept and no trend, (iii)

unrestricted intercept and unrestricted trend. Next we reproduce a part of these tables (CI-iii and CI-v)

in order to explain how the decision for cointegration was made in

Bölük and Mert

(

2015


) based on

Pesaran tables. Note that Pesaran tables are not valid for I(2) variables (

Ali et al. 2016

). The interested

reader can find these tables in

Pesaran et al.

(

2001


).

Narayan and Smyth

(

2005


) on the other hand, has estimated critical values for the bounds test for

four cases at three significance levels and up to seven independent variables up to eighty observations.

The critical values of the four cases are entitled as: (i) Case II: restricted intercept and no trend,

(ii) case III: unrestricted intercept and no trend, (iii) case IV: unrestricted intercept and restricted

trend, (iv) case V: unrestricted intercept and unrestricted trend. In Narayan tables, k stands for the

number of regressors, n is the sample size, I(0): stationary at levels, I(1): stationary at first di

fferences.

The interested reader can find these tables in

Narayan and Smyth

(

2005



).

When no cointegration is confirmed, we can proceed with simple Granger causality (unrestricted

VAR). The VAR equation should be specified on stationary data. There are various reasons why

cointegration is not confirmed (e.g., no relationship between the examined variables or due to omitted

variables). The

Toda and Yamamoto

(

1995


) test is a solution for Granger causality testing in this

case. After all, even when a long-run relationship does not exist in the data, this does not mean that

no short-run relationship exists either. Moreover, it needs to be remembered that the cointegration

equation provides the long-run elasticities. Short-run elasticities are presented by the coe

fficients

of the first di

fferenced variables. In cases where more than one coefficient for a particular variable

has been estimated for the short-run case, these are added and their joint significance is tested with

a Wald test (

Fuinhas and Marques 2012

). However, if cointegration is the case (which occurs very

commonly, when there is a known and established theoretical connection between some variables),

then we can proceed with the establishment of the error correction mechanism (ECM). Evidence of

cointegration implies that there is a long-run relationship between the variables and their connection is

not a short-lived situation, but a more permanent one, which can be recovered every time there is a

disturbance. Alternatively to the above described F-test, a Wald test can be applied which is used to

test the null hypothesis of no cointegration when there is more than one short-run coe

fficient of the

same variable (

Tursoy and Faisal 2018

).

2.4. Diagnostic Tests after Cointegration



A model to be trusted, it must be robust. To support robustness of an estimated model, one needs

to peruse various diagnostic tests. Typical diagnostic χ

2

tests follow to investigate the goodness of fit,



stability, parsimoniality, functional form, and a well-behaved model in general. The Breusch Godfrey

serial correlation LM test, the Breusch–Pagan Godfrey Heteroskedasticity test or the White test, and

the Jarque–Bera test are some of the tests encountered in these applications. In addition to that, the

Ramsey reset test is used for the functional form. Besides the latter, the variance inflation factor (VIF)

for multicollinearity might be useful in cases where there is evidence of multicollinearity.

The Impulse Response Function (IRF), Shifts, and Dummies

The impulse response functions can be of use because they reveal the e

ffect of a standard deviation

shock on the dependant variable. IRF are formed through the moving average (MA) of the vector

autoregressive (VAR) equation

1

. Some energy-growth researchers use them as an indispensable tool



1

A VAR model is a generalization of univariate AR models for multiple time series. Within a VAR framework, all variables

are represented by an equation that explains its evolution based on its own lags and the lags of the other variables in the

multivariate framework. The number of variables k are measured over a period of time t as a linear evolution of their

past values.



Economies 2019, 7, 105

5 of 16


for valuable information in their ARDL models. The impulse response function mainly shows what

happens when the model is transferred to the one side of a dummy variable. For example, if the value

of 1 represents war time and the value of 0 represents peace time, then if we take the ones or zeros only

and separately, we have an impulse response function, one for war time and one for peace time. Thus,

they are also a useful tool to test the stability of a model across structural breaks. There are various

hypotheses that underlie the models after cointegration is confirmed. After the identification of the

long-run relationship in Equations (1) and (2), we can continue with the examination of the short-run

and the long-run Granger causality. The Granger causality refers to a situation where the past can

be used to predict the future. Thus, if past values of X

t

significantly contribute to forecasting future



values of Y

t

, the X



t

is said to Granger cause the Y

t

. However, evidence of correlation is not necessarily



an evidence for causality.

2.5. Combined Cointegration Methods for the Robustness of the ARDL Model

In the particular case of a unique order of integration,

Bayer and Hanck

(

2013


) have developed a

test which borrows elements from a variety of previously developed cointegration tests. The combined

test borrows elements from

Engle and Granger

(

1987


);

Johansen


(

1988


);

Boswijk


(

1994


) and

Banerjee et al.

(

1998


). The combined cointegration test uses Fisher’s formulae and the p-values of the aforementioned

individual tests.

Engle and Granger − Johansen

=

−2



h

ln





P

Engle & Granger



+

ln





P

Johansen



i

Engle and Granger

−Johansen − Boswijk − Banerjee et al.

=

−2



h

ln





P

Engle & Granger



+

ln





P

Johansen





+

ln





P

Boswijk





+

ln





P

Banerjee



i

The null hypothesis of no cointegration is rejected if the aforementioned Fisher statistic exceeds the

critical value as produced by

Bayer and Hanck

(

2013


). The above test balances the decisions produced

by the independent tests which su

ffer from various weaknesses, each one of them.

2.6. Causality after the ARDL Bounds Test and the Importance of the Error Correction Term (ECT)

The investigation of causality is the third step in the energy-growth nexus analysis. The lagged

error correction term is derived from the cointegration equation. Thus the long-run information that is

missed through the di

fferencing of the variables for stationarity purposes, is re-introduced in the system

of causality equations. This is a necessary step when variables are cointegrated. Cointegration implies

that there must be causality of some direction, however, it does not reveal to which direction that

causality goes. Therefore, additional causality analysis is required. Thus, before going to the estimation

of Equations (3) and (4) below, one needs to run another set of regressions in order to get the residuals

which will be inserted to Equations (3) and (4) as the ECT term.

There are many strategies to follow in the examination and direction of causality. One such strategy

is the VECM approach (vector error correction model), which is a restricted form of unrestricted VAR

and is suitable, once the variables are integrated at I(1). According to this model setup, the dependent

variable is dependent on its own lagged values, as well as the lagged values of the independent variables,

the error correction term, and the residual term. This is shown in the following set of equations.

∆lnY

t

=



a

1

+



l

X

i=1



a

11

∆LY



t−i

+

m



X

j=0


a

22

∆X



t− j

+

n



1

ECT


t−1

+

µ



1i

(3)


∆lnX

t

=



a

1

+



l

X

i=1



a

21

∆LX



t−i

+

m



X

j=0


a

22

∆Y



t− j

+

n



2

ECT


t−1

+

µ



2i

(4)



Economies 2019, 7, 105

6 of 16


Residual terms in the above equations, are assumed to distribute normally. The coe

fficient of the

ECT must be negative to assure system convergence from the short run toward the long run. An ECT

equal to x% is interpreted as such that x% of economic growth is corrected by deviations in the short

run that lead eventually to the long-run equilibrium path. The significant variables on the right hand

side of each equation show short-run causality for the dependent variable.

FMOLS and DOLS Estimators for Robustness

The FMOLS (fully modified OLS) and the DOLS (dynamic OLS) were developed by

Phillips and

Hansen


(

1990


) and

Stock and Watson

(

1993


). They lead to the generation of asymptotically e

fficient


coe

fficients, because they take into account the serial autocorrelation and endogeneity. They are

applied only in the I(1) case for all variables. The latter makes them less flexible and attractive

methods. OLS is biased when variables are cointegrated but nonstationary, while FMOLS is not. DOLS

performs better than the FMOLS approach (

Kao and Chiang 2000

) for several reasons: DOLS is

computationally simpler and it reduces bias better than FMOLS. The t-statistic produced from DOLS

approximates the standard normal density better than the statistic generated from the OLS or the FMOLS.

DOLS estimators are fully parametric and do not require pre-estimation and non parametric correction.

Ali et al.

(

2017



) reports that the most significant benefit of DOLS is that the test considers the mixed

order of integration of variables in the cointegration framework.

2.7. Additional Ways to Study Causality

Literature reports additional types of causality: (a) The weak causality

/short-run causality, (b) the

long-run causality, (c) the strong causality (joint causality), (d) the pairwise causality. Each one serves a

particular purpose.

(a) Weak causality

/short-run causality

Each variable is caused by its own past only.

(b) Long-run causality

The error correction term is zero. This is a VAR (vector autoregression) causality leading to

Toda and Yamamoto

(

1995



) method. Granger causality can be checked for existence through a VAR

model (note that data are not in di

fferences, namely they are in level form):

Y

t



=

g

0



+

α

1



Υ

t−1


+

. . .


+

α

ρ



Υ

t−p


+

b

1



X

t−1


+

. . .


+

b

p



X

t−p


+

u

t



X

t

=



h

0

+



c

1

Υ



t−1

+

. . .



+

c

ρ



Υ

t−p


+

d

1



X

t−1


+

. . .


+

d

p



X

t−p


+

v

t



H

0

: b



1

=

b



2

=

. . .



=

b

p



=

0

H



1

: X Granger causes Y

A similar hypothesis set up can be constructed for the second equation, but this will not be done

here for space considerations. Please note the following rationale:

If b

i

, 0 and di=0, then X



t

will lead Y

t

in the long run.



If b

i

=



0 and d

i

, 0, then Y



t

will lead X

t

in the long run.



If b

i

, 0 and d



i

, 0, then the feedback relationship is present.

If b

i

=



0 and d

i

= 0, then no cointegration exists.



After we have calculated the diagnostics of the model and we have verified that the model is well

behaved, then the next step is the bounds test. The existence of a long-run relationship can be further

corroborated with the investigation of significance of the individual terms.



Economies 2019, 7, 105

7 of 16


(c) Strong causality: The joint causality investigation process

This is altogether the case described in (a) and (b). The joint causality test also known as strong

causality test (

Lee and Chang 2008

) identifies two sources of causation, one the short run and the other

the long run, to which the variables re-adjust after a short-run perturbation. This is tested with the

short-run coe

fficients of the lagged variables and the significance of the lagged error correction term.

Granger causality can be investigated in two other known ways: It can be investigated with the F-test

to decide about the significance of first di

fference stationary variables (

Asafu-Adjaye 2000

;

Masih and



Masih 1996

) or by including the ECT as a source of variation. This is most commonly checked with a

t-test.

(d) Pairwise Granger causality test

This is another solution toward the investigation of causality when cointegration is not confirmed.

An additional usage is for the corroboration of VECM results.

Menegaki and Tugcu

(

2016



) have

employed this method for the investigation of the energy-sustainable growth nexus in Sub-Saharan

African countries for the years 1985–2013. In addition to that,

Menegaki and Tugcu

(

2018


) have employed

the same method for the investigation of the energy-sustainable growth nexus in Asian countries.




Yüklə 254,06 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin