MUHAMMAD AL-XORAZMIY NOMIDAGI
TOSHKENT AXBOROT TEXNOLOGIYALARI
UNIVERSITETI QARSHI FILIALI
Kompyuter injiniringi (Kompyuter injiniringi,
AT-Servis, Axborot xavfsizligi, Multimedia) fakulteti
KI 13-22 (S) GURUH TALABASI
SHERBOYEV AZAMATNING
Hisob fanidan tayyorlagan
MUSTAQIL ISHI
Qarshi-2022
IKKI ARGUMENTLI FUNKSIYA EKSTREMUMLARI VA ENG KATTA, ENG KICHIK QIYMATLARINI TOPISH. SHARTLI EKSTREMUMLARI.
REJA:
Funksiyalarning ekstremumlari
Ekstremum mavjud bo`lishining zaruriy sharti
Ekstremum mavjud bo`lishining yetarli shartlari.
Funksiyalarning kesmadagi eng katta va eng kichik qiymatlari
Foydalanilgan adabiyotlar.
Funksiyalarning ekstremumlari
1-ta`rif. Agar funksiya biror nuqtada uzluksiz bo`lib, shu nuqtaning shunday atrofi mavjud bo`lsaki, u atrofning barcha nuqtalari uchun ushbu
(1)
tengsizlik bajarilsa, u holda nuqta ƒ(x) funksiyaning minimum nuqtasi deyiladi; ƒ( ) esa ƒ(x) funksiyaning minimumi deyiladi.
2-ta`rif. Agar ƒ(x) funksiya biror nuqtada uzluksiz bo`lib, shu nuqtaning shunday atrofi mavjud bo`lsaki, u atrofning barcha nuqtalari uchun ushbu
ƒ(x)<ƒ( ) (2)
tengsizlik bajarilsa, u holda nuqta ƒ(x) funksiyaning maksimum nuqtasi deyiladi; ƒ( ) esa ƒ(x) funksiyaning maksimumi deyiladi.
3-ta`rif. ƒ(x) funksiyaning minimum yoki maksimum nuqtalari uning ekstremum nuqtalari deyiladi, ƒ(x) funksiyaning minimumi yoki maksimumi uning ekstremumi deyiladi.
4-ta`rif. Agar ƒ(x) funksiya (a, b) intervalda aniqlangan va uzluksiz, xo nuqta (a, b) intervalning (yoki [a, b] kesmaning [a, b) (a, b] yarim intervallarning) biror nuqtasi bo`lib, shu intervalning xo dan farqli barcha nuqtalari uchun ushbu ƒ(x) <ƒ(xo) tengsizlik bajarilsa, u holda ƒ(xo) berilgan ƒ(x) funksiyaning (a, b) intervalda eng katta qiymati deyiladi; agar ƒ(x)>ƒ(xo) tengsizlik bajarilsa, ƒ(xo) berilgan ƒ(x) funksiyaning (a, b) intervalda eng kichik qiymati deyiladi.
Y
1
X
1
-1
0
1-chizma
2-chizma
Albatta ta`rifda keltirilgan tengsizliklarni (a, b) dan olingan barcha x nuqtalarda tekshirib chiqish hamma vaqt oson bo`lavermaydi. Ba`zi sodda funksiyalar uchun bu ta`rifga misollar ko`raylik.
ƒ(x)= funksiyaning aniqlanish sohasi [-1, 1] kesmadan iborat. Shu kesmaning chetki nuqtalarida, ya`ni x =-1, x =+1 da funksiyaning qiymati nolga teng; ichki nuqtalarida esa, >0. Ammo x ning qiymati absolyut qiymati bo`yicha kamaygan sari funksiyaning qiymati orta boradi, x=0 bo`lganda esa u o`zining eng katta qiymatiga, ya`ni 1ga erishadi.
ƒ(x)= funksiya uchun aniqlanish soha: (-1, 1). Bu funksiya maxraji |x|=1 bo`lganda nolga, demak ƒ(x) funksiyaning qiymati + ga intiladi. Ammo berilgan funksiya qiymatlari sohasi [1, ) yarim intervaldan iborat bo`lib, funksiyaning eng katta qiymati bu sohaga tegishli bo`lmaydi, shu bilan birga u istalgancha katta miqdordir.
Bevosita tekshirib ko`rish mumkinki, 1-misolda funksiyaning eng kichik qiymati 0, 2-misolda esa funksiyaning eng kichik qiymati 1 bo`ladi.
5-ta`rif. Agar [a, b] kesmada uzluksiz bo`lgan ƒ(x) funksiya uchun shu kesmaning bir necha ichki nuqtasi:
1) maksimum nuqtasi bo`lsa, u holda ƒ(x) ning shu nuqtalaridagi qiymatlari va ƒ(a), ƒ(b) qiymatlarining eng kattasi ƒ(x) funksiyaning [a, b] kesmadagi eng katta qiymati deyiladi.
2) minimum nuqtasi bo`lsa, u holda ƒ(a), ƒ(b) qiymatlarining eng kichigi ƒ(x) funksiyaning [a,b] kesmadagi eng kichik qiymati deyiladi.
Qo`shimcha sifatida shuni aytamizki, agar ƒ(x) funksiyaning aniqlanish sohasi (a,b) intervaldan (yoki yarim intervallar (a, b], [a, b) dan) iborat bo`lsa, u holda 5-ta`rifda ƒ(a) va ƒ(b) lar o`rniga va miqdorlari olinadi.
Ferma teorimasi. ƒ(x) funksiya biror (a, b) intervalda aniqlangan va uzluksiz bo`lib shu intervalning biror xo nuqtasida o`zining eng katta yoki eng kichik qiymatiga erishsin. Agar ƒ`(xo) hosila mavjud bo`lsa, u holda shu hosila nolga teng bo`ladi, ya`ni ƒ`(xo)=0.
Isboti. Aniqlik uchun ƒ(x)funksiya xo nuqtada o`zining eng katta qiymatiga erishsin deylik, ya`ni Bundan agar xo bo`lsa,
(3)
Agar x>xo bo`lsa,
(4)
tengsizliklarni yozish mumkin. Teorimaning shartiga ko`ra, ƒ`(xo) hosila mavjud. Shuning uchun (3) tengsizlikdan da ni (4) dan da ni hosil qilamiz. Bu ikki munosabatdan f`(xo)=0 ekani chiqadi. Teorima isbot bo`ldi.
Ekstremum mavjud bo`lishining zaruriy sharti
1-teorima. Agar xo nuqtaning biror atrofida aniqlangan funksiya uchun xo nuqta ekstremum nuqta bo`lsa, u holda ƒ`(xo) hosila yo nolga teng, yo mavjud emas.
Isboti: nuqtaning shunday atrofini olamizki, u atrofda ƒ(x) funksiyaning boshqa ekstremum nuqtasi bo`lmasin. Jumladan, biror δ>0 uchun ( ) interval shunday atrof xizmatini o`taydi. Shuning uchun, ( ) intervalning nuqtasida funksiya yo eng katta, yo eng kichik qiymatga erishadi; demak, Ferma teorimasiga ko`ra, agar mavjud bo`lsa, bo`ladi. Ammo nuqtada mavjud bo`lmasligi ham mumkin.
a
x0
b
0
a
a
y
-chizma
x
x0
a
b
b-chizma
Ta`kidlab aytamizki, agar biror nuqtada yoki mavjud bo`lmasa, bundan xo nuqtaning ekstremum nuqta ekani kelib chiqmaydi. Jumladan, funksiya uchun hosila, ya`ni nuqtada mavjud va nolga teng. Ammo bu nuqta ekstremum nuqtasi emas.
1-ta`rif. Biror sohada uzluksiz bo`lgan ƒ( ) funksiyaning hosilasini nolga aylantiradigan yoki hosila mavjud bo`lmaydigan nuqtalar stasionar(kritik)nuqtalar deyiladi.
Mashqlar. Ushbu funksiyalarning stasionar nuqtalarini topish.
1. | x |+2. 5. |cosx|.
6.
2. 7.
3. tg3x 8.
4. arc tgx
Ekstremum mavjud bo`lishining yetarli shartlari.
Quyida keltriladigan ikki teorima yetarli shartlarni beradi. Ba`zi hollarda bu teorimalar ekstremum izlashning birinchi, ikkinchi qoidalari deb ham aytiladi.
1-teorema(birinchi qoida). Agar ƒ(x) funksiya nuqtada uzluksiz bo`lib,
1) ( intervalda intervalda esa ƒ(x)>0 bo`lsa, u holda ƒ(x) funksiya nuqtada minimumga ega bo`ladi;
2) intervalda ƒ(x )>0 va ( intervalda esa ƒ`(x)<0 bo`lsa, u holda ƒ(x) funksiya nuqtada minimumga ega bo`ladi.
0>
Dostları ilə paylaş: |