Universiteti jizzax filiali “amaliy matematika” fakulteti


-ta’rif: Barcha nuqtalari ichki nuqtalardan iborat to’plam ochiq to’plam deyiladi. Agar z0C



Yüklə 16,68 Kb.
səhifə3/5
tarix01.12.2023
ölçüsü16,68 Kb.
#170444
1   2   3   4   5
Amaliy matematika-fayllar.org

3-ta’rif: Barcha nuqtalari ichki nuqtalardan iborat to’plam ochiq to’plam deyiladi.

Agar z0C (z0) nuqtaning ixtiyoriy o’yilgan atrofida DC (D) to’plamning kamida bitta nuqtasi bo’lsa, z0 nuqta D to’plamning limit nuqtasi deyiladi.



4-ta’rif: Agar D to’plamning barcha limit nuqtalari shu D to’plamga tegishli bo’lsa, D to’plam yopiq to’plam deyiladi.

Misollar:
Ushbu

D ={ z  C : | z - z0 | < r }


to’plamni qaraylik. Bunda z0 = a +ib berilgan nuqta, r esa musbat son.
Ma’lumki z = x + iy; z- z0 = (x - a) + i (y - b)
Demak,

|z- z0| =|(x-a)+i(y-b)|=< r  (x-a)2 + (y-b)2 < r2


Bu esa, markazi (a, b) nuqta da bo’lgan r radiusli aylananing barcha ichki nuqta laridan iboratdir. Shunday qilib, bu tengsizlikning geometrik ma’nosi markazi z0 nuqta da bo’lgan r radiusli doiradan iborat ekan.
Ushbu
D q{ z  C : r0 < | z - z0 | < r1 }

To’plamni karaylik. Bunda z0C berilgan nuqta, r0 va r1 lar musbat sonlar. Bu to’plam ochiq to’plam bo’ladi. D to’plam markazi z0 nuqtada, radiuslari r0va r1 (r0 < r1) bo’lgan aylanalar bilan chegaralangan halkani ifodalaydi.


Haqiqatan ham, z = x + iy; z0 = a + ib bo’lsa,

r0<|z-z0|1  r0<< r1  r02 < (x-a)2Q(y-b)2 < r12


bo’ladi.

Ushbu
D q{ z  C : | z - z0 |  r }


Yopiq to’plam bo’ladi.

DC to’plam bilan bu to’plamning barcha limit nuqtalarining yig’indisidan iborat to’plamga D to’plamning yopig’i deyiladi va kabi belgilanadi.

5-ta’rif: DC (D) to’plam berilgan bo’lsin. Agar ,  shartlarni qanoatlantiruvchi, bo’sh bo’lmagan D1 va D2 to’plamlar mavjud bo’lmasa, D to’plam bog’lamli to’plam deyiladi.

6-ta’rif: Agar DC (D) to’plamning ixtiyoriy ikkita z1 va z2 nuqtalarini D to’plamda to’lik yotuvchi chiziq bilan tutashtirish mumkin bo’lsa, D to’plam chiziqli bog’lamli deyiladi.

7-ta’rif: Agar DC (D)to’plam ham ochiq, ham bog’lamli bo’lsa, u soha deb ataladi.
Ochiq to’plamlar uchun bog’lamlilik tushunchasi bilan chiziqli bog’lamlilik tushunchasi ustma-ust tushadi.


8-ta’rif: DC (D) sohaning o’ziga tegishli bo’lmagan limit nuqtasi uning chegaraviy nuqtasi deyiladi. D sohaning barcha chegaraviy nuqta lari to’plamiga uning chegarasi deyiladi va D ko’rinishda belgilanadi.
Agar D sohaning chegarasi bog’lamli to’plam bo’lsa, D soha bir bog’lamli deyiladi, aks holda u ko’p bog’lamli deyiladi.



Yüklə 16,68 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin