Scientific Reports
| (2021) 11:13202 |
https://doi.org/10.1038/s41598-021-92548-7
www.nature.com/scientificreports/
15. Nakamura, H., Izumi, T. & Sampe, T. Interannual and decadal modulations recently observed in the Pacific storm track activity
and East Asian winter monsoon.
J. Clim.
15(14), 1855–1874 (2002).
16. Chang, E. K., Lee, S. & Swanson, K. L. Storm track dynamics.
J. Clim.
15(16), 2163–2183 (2002).
17. Lorenz, E. N. Available potential energy and the maintenance of the general circulation.
Tellus
7(2), 157–167 (1955).
18. Orlanski, I. & Katzfey, J. The life cycle of a cyclone wave in the Southern Hemisphere Part I: Eddy energy budget.
J. Atmos. Sci.
48(17), 1972–1998 (1991).
19. Hoskins, B. J., James, I. N. & White, G. H. The shape, propagation and mean-flow interaction of large-scale weather systems.
J.
Atmos. Sci.
40, 1595–1612 (1983).
20. Trenberth, K. E. An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized
Eliassen-Palm flux diagnostics.
J. Atmos. Sci.
43, 2070–2087 (1986).
21. Plumb, R. A. Three-dimensional propagation of transient quasi-geostrophic eddies and its relationship with the eddy forcing of
the time-mean flow.
J. Atmos. Sci.
43(16), 1657–1678 (1986).
22. Lee, S. & Kim, H. K. The dynamical relationship between subtropical and eddy-driven jets.
J. Atmos. Sci.
60(12), 1490–1503 (2003).
23. Nakamura, H., Sampe, T., Tanimoto, Y. & Shimpo, A. Observed associations among storm tracks, jet streams, and midlatitude
oceanic fronts Earth Climate: The Ocean-Atmosphere Interaction.
Geophys. Monogr.
147, 329–345 (2004).
24. Wang, C. C. & Rogers, J. C. A composite study of explosive cyclogenesis in different sectors of the North Atlantic Part I: Cyclone
structure and evolution.
Mon. Weather Rev.
129(6), 1481–1499 (2001).
25. Lau, N. C. & Holopainen, E. O. Transient eddy forcing of the time-mean flow as identified by geopotential tendencies.
J. Atmos.
Sci.
41, 313–328 (1984).
26. Nakamura, H., Miyasaka, T., Kosaka, Y., Takaya, K. & Honda, M. Northern Hemisphere extratropical tropospheric planetary waves
and their low-frequency variability: Their vertical structure and interaction with transient eddies and surface thermal contrasts.
Climate Dyn Why Does Climate Vary Geophys. Monogr.
189, 149–179 (2010).
27. Tamarin, T. & Kaspi, Y. The poleward motion of extratropical cyclones from a potential vorticity tendency analysis.
J. Atmos. Sci.
73(4), 1687–1707 (2016).
28. Thompson, D. W. & Wallace, J. M. Annular modes in the extratropical circulation Part I: Month-to-month variability.
J. Clim.
13(5), 1000–1016 (2000).
29. Thompson, D. W. & Woodworth, J. D. Barotropic and baroclinic annular variability in the Southern Hemisphere.
J. Atmos. Sci.
71(4), 1480–1493 (2014).
30. Nakamura, H. & Wallace, J. M. Synoptic behavior of baroclinic eddies during the blocking onset.
Mon. Weather Rev.
121(7),
1892–1903 (1993).
31. Nakamura, H., Nakamura, M. & Anderson, J. L. The role of high-and low-frequency dynamics in blocking formation.
Mon. Weather
Rev.
125(9), 2074–2093 (1997).
32. Yamazaki, A. & Itoh, H. Vortex-vortex interactions for the maintenance of blocking Part I: The selective absorption mechanism
and a case study.
J. Atmos. Sci.
70, 725–742 (2013).
33. Yin, J. H. A consistent poleward shift of the storm tracks in simulations of 21st century climate.
Geophys. Res. Lett.
32(18), L18701
(2005).
34. Ulbrich, U.
et al.
Changing Northern Hemisphere storm tracks in an ensemble of IPCC climate change simulations.
J. Clim.
21(8),
1669–1679 (2008).
35. Chang, E. K., Guo, Y. & Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming.
J. Geophys.
Res. Atmos.
117, D23118 (2012).
36. Shaw, T. A.
et al.
Storm track processes and the opposing influences of climate change.
Nat. Geosci.
9(9), 656–664 (2016).
37. Pan, Y.
et al.
Earth’s changing global atmospheric energy cycle in response to climate change.
Nat. Commun.
Dostları ilə paylaş: |