2. Leybnits formulasi. Agar u(x) va v(x) funksiyalar n-tartibli hosilalarga ega bo‘lsa, u holda bu ikki funksiya ko‘paytmasining n -tartibli hosilasi uchun
+ (9)
formula o‘rinli bo‘ladi. Bunda .
Isboti. Matematik induksiya usulini qo‘llaymiz. Ma’lumki,
(uv)’=u’v+uv’. Bu esa n=1 bo‘lganda (9) formulaning to‘g‘riligini ko‘rsatadi. Shuning uchun (9) formulani ixtiyoriy n uchun o‘rinli deb olib, uning n+1 uchun ham to‘g‘riligini ko‘rsatamiz. (9) ni differensiyalaymiz:
+ (10)
Ushbu
=
tengliklardan foydalanib, (10) ni quyidagicha yozamiz:
Demak, (9) formula n+1 uchun ham o‘rinli ekan. Isbot etilgan (9) formula Leybnits formulasi deb ataladi.
3. Leybnits formulasi tatbiqlari.
Misol. y=x3ex ning 20-tartibli hosilasi topilsin.
Yechish. u=ex va v=x3 deb olsak, Leybnits formulasiga ko‘ra
bo‘ladi. (x3)’=3x2, (x3)’’=6x, (x3)’’’=6, (x3)(4)=0 tengliklarni va y=x3 funksiyaning hamma keyingi hosilalarining 0 ga tengligini, shuningdek n uchun (ex)(n)=ex ekanligini e’tiborga olsak,
tenglik hosil bo‘ladi.
Endi koeffitsientlarni hisoblaymiz:
Demak,
Foydalanilgan adabiyotlar: 1. Azlarov. T., Mansurov. X., Matematik analiz. T.: «O‘zbekiston». 1 t: 2005, 2 t . 1995 2. Fixtengols G. M. „Kurs differensialnogo i integralnogo ischeleniya“ M.: 1970. 3. Sa’dullayev A. va boshqalar. Matematik analiz kursi misol va masalalar to`plami. T., «O‘zbekiston». 1-q. 1993., 2-q. 1995. 4. Demidovich B. P. “Sbornik zadach i uprajneni po matematicheskomu analizu” T.: 1972. 5. Ilin V. A., Poznyak E. G. “Maematik analiz asoslari” I qism, T.: 1981.