Environmental Ecology Plan: About Environmental Ecology
Levels, scope, and scale of organization
Ecology (from Ancient Greek οἶκος (oîkos) 'house', and -λογία (-logía) 'study of')[A] is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overlaps with the closely related sciences of biogeography, evolutionary biology, genetics, ethology, and natural history. Ecology is a branch of biology, and it is not synonymous with environmentalism.
Among other things, ecology is the study of:
Life processes, antifragility, interactions, and adaptations
The movement of materials and energy through living communities
The successional development of ecosystems
Cooperation, competition, and predation within and between species
The abundance, biomass, and distribution of organisms in the context of the environment
Patterns of biodiversity and its effect on ecosystem processes
Ecology has practical applications in conservation biology, wetland management, natural resource management (agroecology, agriculture, forestry, agroforestry, fisheries), urban planning (urban ecology), community health, economics, basic and applied science, and human social interaction (human ecology).
The word ecology (German: Ökologie) was coined in 1866 by the German scientist Ernst Haeckel, and it became a rigorous science in the late 19th century. Evolutionary concepts relating to adaptation and natural selection are cornerstones of modern ecological theory.
Ecosystems are dynamically interacting systems of organisms, the communities they make up, and the non-living (abiotic) components of their environment. Ecosystem processes, such as primary production, nutrient cycling, and niche construction, regulate the flux of energy and matter through an environment. Ecosystems have biophysical feedback mechanisms that moderate processes acting on living (biotic) and abiotic components of the planet. Ecosystems sustain life-supporting functions and provide ecosystem services like biomass production (food, fuel, fiber, and medicine), the regulation of climate, global biogeochemical cycles, water filtration, soil formation, erosion control, flood protection, and many other natural features of scientific, historical, economic, or intrinsic value.
Main article: Biodiversity
Biodiversity refers to the variety of life and its processes. It includes the variety of living organisms, the genetic differences among them, the communities and ecosystems in which they occur, and the ecological and evolutionary processes that keep them functioning, yet ever changing and adapting.
Biodiversity (an abbreviation of "biological diversity") describes the diversity of life from genes to ecosystems and spans every level of biological organization. The term has several interpretations, and there are many ways to index, measure, characterize, and represent its complex organization. Biodiversity includes species diversity, ecosystem diversity, and genetic diversity and scientists are interested in the way that this diversity affects the complex ecological processes operating at and among these respective levels. Biodiversity plays an important role in ecosystem services which by definition maintain and improve human quality of life. Conservation priorities and management techniques require different approaches and considerations to address the full ecological scope of biodiversity. Natural capital that supports populations is critical for maintaining ecosystem services and species migration (e.g., riverine fish runs and avian insect control) has been implicated as one mechanism by which those service losses are experienced. An understanding of biodiversity has practical applications for species and ecosystem-level conservation planners as they make management recommendations to consulting firms, governments, and industry.
Habitat
Biodiversity of a coral reef. Corals adapt to and modify their environment by forming calcium carbonate skeletons. This provides growing conditions for future generations and forms a habitat for many other species.
Long-tailed broadbill building its nest
The habitat of a species describes the environment over which a species is known to occur and the type of community that is formed as a result. More specifically, "habitats can be defined as regions in environmental space that are composed of multiple dimensions, each representing a biotic or abiotic environmental variable; that is, any component or characteristic of the environment related directly (e.g. forage biomass and quality) or indirectly (e.g. elevation) to the use of a location by the animal." 745 For example, a habitat might be an aquatic or terrestrial environment that can be further categorized as a montane or alpine ecosystem. Habitat shifts provide important evidence of competition in nature where one population changes relative to the habitats that most other individuals of the species occupy. For example, one population of a species of tropical lizard (Tropidurus hispidus) has a flattened body relative to the main populations that live in open savanna. The population that lives in an isolated rock outcrop hides in crevasses where its flattened body offers a selective advantage. Habitat shifts also occur in the developmental life history of amphibians, and in insects that transition from aquatic to terrestrial habitats. Biotope and habitat are sometimes used interchangeably, but the former applies to a community's environment, whereas the latter applies to a species' environment.
Niche
Main article: Ecological niche
Termite mounds with varied heights of chimneys regulate gas exchange, temperature and other environmental parameters that are needed to sustain the internal physiology of the entire colony.
Definitions of the niche date back to 1917,but G. Evelyn Hutchinson made conceptual advances in 1957 by introducing a widely adopted definition: "the set of biotic and abiotic conditions in which a species is able to persist and maintain stable population sizes.": 519 The ecological niche is a central concept in the ecology of organisms and is sub-divided into the fundamental and the realized niche. The fundamental niche is the set of environmental conditions under which a species is able to persist. The realized niche is the set of environmental plus ecological conditions under which a species persists. The Hutchinsonian niche is defined more technically as a "Euclidean hyperspace whose dimensions are defined as environmental variables and whose size is a function of the number of values that the environmental values may assume for which an organism has positive fitness."
Biogeographical patterns and range distributions are explained or predicted through knowledge of a species' traits and niche requirements. Species have functional traits that are uniquely adapted to the ecological niche. A trait is a measurable property, phenotype, or characteristic of an organism that may influence its survival. Genes play an important role in the interplay of development and environmental expression of traits. Resident species evolve traits that are fitted to the selection pressures of their local environment. This tends to afford them a competitive advantage and discourages similarly adapted species from having an overlapping geographic range. The competitive exclusion principle states that two species cannot coexist indefinitely by living off the same limiting resource; one will always out-compete the other. When similarly adapted species overlap geographically, closer inspection reveals subtle ecological differences in their habitat or dietary requirements. Some models and empirical studies, however, suggest that disturbances can stabilize the co-evolution and shared niche occupancy of similar species inhabiting species-rich communities. The habitat plus the niche is called the ecotope, which is defined as the full range of environmental and biological variables affecting an entire species.
Niche construction
Main article: Niche construction
See also: Ecosystem engineering
Organisms are subject to environmental pressures, but they also modify their habitats. The regulatory feedback between organisms and their environment can affect conditions from local (e.g., a beaver pond) to global scales, over time and even after death, such as decaying logs or silica skeleton deposits from marine organisms. The process and concept of ecosystem engineering are related to niche construction, but the former relates only to the physical modifications of the habitat whereas the latter also considers the evolutionary implications of physical changes to the environment and the feedback this causes on the process of natural selection. Ecosystem engineers are defined as: "organisms that directly or indirectly modulate the availability of resources to other species, by causing physical state changes in biotic or abiotic materials. In so doing they modify, maintain and create habitats."
The ecosystem engineering concept has stimulated a new appreciation for the influence that organisms have on the ecosystem and evolutionary process. The term "niche construction" is more often used in reference to the under-appreciated feedback mechanisms of natural selection imparting forces on the abiotic niche. An example of natural selection through ecosystem engineering occurs in the nests of social insects, including ants, bees, wasps, and termites. There is an emergent homeostasis or homeorhesis in the structure of the nest that regulates, maintains and defends the physiology of the entire colony. Termite mounds, for example, maintain a constant internal temperature through the design of air-conditioning chimneys. The structure of the nests themselves is subject to the forces of natural selection. Moreover, a nest can survive over successive generations, so that progeny inherit both genetic material and a legacy niche that was constructed before their time.
Biome
Main article: Biome
Biomes are larger units of organization that categorize regions of the Earth's ecosystems, mainly according to the structure and composition of vegetation. There are different methods to define the continental boundaries of biomes dominated by different functional types of vegetative communities that are limited in distribution by climate, precipitation, weather and other environmental variables. Biomes include tropical rainforest, temperate broadleaf and mixed forest, temperate deciduous forest, taiga, tundra, hot desert, and polar desert. Other researchers have recently categorized other biomes, such as the human and oceanic microbiomes. To a microbe, the human body is a habitat and a landscape. Microbiomes were discovered largely through advances in molecular genetics, which have revealed a hidden richness of microbial diversity on the planet. The oceanic microbiome plays a significant role in the ecological biogeochemistry of the planet's oceans.
Biosphere
Main article: Biosphere
See also: Earth's spheres
The largest scale of ecological organization is the biosphere: the total sum of ecosystems on the planet. Ecological relationships regulate the flux of energy, nutrients, and climate all the way up to the planetary scale. For example, the dynamic history of the planetary atmosphere's CO2 and O2 composition has been affected by the biogenic flux of gases coming from respiration and photosynthesis, with levels fluctuating over time in relation to the ecology and evolution of plants and animals. Ecological theory has also been used to explain self-emergent regulatory phenomena at the planetary scale: for example, the Gaia hypothesis is an example of holism applied in ecological theory.The Gaia hypothesis states that there is an emergent feedback loop generated by the metabolism of living organisms that maintains the core temperature of the Earth and atmospheric conditions within a narrow self-regulating range of tolerance.