FROM MUTATIONS TO DISEASE MECHANISM IN RETT SYNDROME,
BREAST CANCER, AND CONGENITAL HYPOTHYROIDISM
by
brahim Barış
B.S., Molecular Biology and Genetics, Boğaziçi Univesity, 2000
M.S., Molecular Biology and Genetics, Boğaziçi Univesity, 2002
Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of
Doctor of Philosophy
Graduate Program in Molecular Biology and Genetics
Boğaziçi University
2008
ii
FROM MUTATIONS TO DISEASE MECHANISM IN RETT SYNDROME,
BREAST CANCER, AND CONGENITAL HYPOTHYROIDISM
APPROVED BY:
Assoc. Prof. Esra Battaloğlu…………………………..….
(Thesis Supervisor)
Prof. A. Nazlı Başak………...…………………………….
Prof. Hande Çağlayan……………………………..………
Prof. Uğur Özbek………………………………………….
Assoc. Prof. Müge Türet Sayar …………………..……….
DATE OF APPROVAL:
10.06.2008
iii
to my family
iv
ACKNOWLEDGEMENTS
I would like to express my sincere gratitude to my thesis supervisor Assoc. Prof. Esra
Battaloğlu for her endless support and intimate encouragement throughout my thesis.
My appreciation is also extended to the members of my thesis committee Prof. A.
Nazlı Başak, Prof. Hande Çağlayan, Prof. Uğur Özbek, and Assoc. Prof. Müge Türet Sayar
for allocating their time to evaluate this work.
I would like to extend my gratitude to Boğaziçi University, Scientific Research
Projects Fund for funding the expenses of my thesis (Project No: 03S101 and 08B103D).
I am grateful to the CMT members Duygu, Çiğdem, rem, Başak, and Dr. Rezan who
has provided a warm environment in the lab. I am also thankful to all Retina and plant
group members for creating best laboratory environment ever. I am grateful to my dear
friends Dr. Birdal Bilir and Dr. Yeşim Özmen for their valuable and wonderful friendship.
I would to extend my thanks to all my dear friends (Kader, nanç, Sibel, and Murat) in the
department.
I wish to thank all of the academic staff, among whom I would like to mention Prof.
Kuyaş Buğra, Assoc. Prof. Muge Türet Sayar, and Assoc. Prof. Nesrin Özeren for their
kind support and encouragement.
I would like to express my great thanks to each of my family member, especially to
my parents for standing by my side at all time. I am grateful to my wife Tuğba who has
always supported, appreciated and encouraged me with his endless love and patience
throughout my life. Additionally, I would not complete my thesis work on time without her
help in DNA sequencing and quantitative analyses.
v
ABSTRACT
FROM MUTATIONS TO DISEASE MECHANISM IN RETT
SYNDROME, BREAST CANCER, AND CONGENITAL
HYPOTHYROIDISM
Epidemiological studies provide the correlative data to understand the etiology of
human inherited diseases and develop efficient genetic testing assays. Additionally, the
accumulated data of genetic and epigenetic findings, expression profiling, and proteomics
allows disease diagnosis, to understand the molecular mechanisms leading to the disease
pathogenesis, and to develop efficient therapeutic approaches. In the framework of this
thesis, we have investigated genetic and epigenetic changes and performed genotype-
phenotype correlations to unravel the molecular mechanisms that lead to three different
diseases, Rett Syndrome, breast cancer, and congenital hypothyroidism.
The genetic basis of Rett Syndrome (RTT) was investigated in a total of 71 RTT
patients. A heterogeneous spectrum of disease-causing MECP2 mutations was identified in
68.2 per cent of a clinically well defined group of cases whereas in only 12.5 per cent of
the patients referred for differential diagnosis suggesting that this gene does not represent a
major cause of the disease among patients with Rett-like features. For the first time, we
have identified gene duplications as causative mutations in female atypical RTT cases.
Consistent with the animal models, our results support the possibility that duplication of
MECP2 that leads to increased expression might underlie some cases of X-linked delayed-
onset neurobehavioral disorders including Rett Syndrome. Our results showed that exon
rearrangements that could not be detected by standard techniques contribute to 19.3 per
cent of these MECP2 mutations, and should be considered in especially RTT variants in
order to determine the actual significance of the gene in the etiology of RTT.
Genotype/phenotype correlation was performed based on comparison of severity score of
patients with the type and location of the mutation and the XCI pattern. The results did not
reveal a statistically significant correlation, but, the patients with exon deletions were
vi
found to be more severely affected than patients with all other types of mutations and
patients with exon duplications to present with severe eye contact problems. Additionally,
we have developed and validate a novel multiplexed amplification refractory mutation
system (ARMS) assay for identification of seven common mutations that accounts for
almost 65 per cent of all MECP2 gene mutations. The validation studies revealed that our
novel assay is an efficient, reliable, and cost-effective screen for molecular genetic testing
of patients with RTT. Furthermore, we tested the effect of DNA concentration on reliablity
and reproducibility of SYBR green dye-based Real Time PCR analysis to detect the
MECP2 exon rearrangments. The results suggested that Real Time PCR analysis is reliable
for determination of the exon copy number if the DNA amount is in the range of 1-50 ng.
To our knowledge, there are no known reports investigating the role of methylation
of hHR23A and hHR23B genes in the tumor tissues. We have characterized the 5' flanking
region of the hHR23A and hHR23B genes using web-based analysis and investigated the
involvement of methylation status of putative promoter region of hHR23A and hHR23B
genes in breast carcinogenesis. The observations of the hypermethylation of hHR23A gene
and the presence of methylated conserved motifs and transcription binding sites in
hHR23B gene among the analyzed tumor tissues suggested the involvement of methylation
of hHR23 genes in the breast carcinogenesis. Investigation of epigenetic changes in tumor
samples of breast cancer patients was a pioneering work since available literature
implicates its presence only in cell lines.
Since our CH patient was the first case with Bamforth Syndrome and suffered the
plasma cholinesterase deficiency, the genetic mechanisms leading to congenital
hypothyroidism and prolonged paralysis after mivacurium were investigated. In contrast to
other reported two patients with TTF2 gene mutation, the presence of thyroid tissue in our
patient suggested further phenotypic heterogeneity associated with human TTF-2
mutations. The functional study with a collaborative work also helped to understand the
genetic mechanisms and provided original evidence that implicated differential effects of
TTF-2 mutations on downstream target genes required for normal human thyroid
organogenesis.
vii
ÖZET
RETT SENDROMU, MEME KANSER , VE KONJEN TAL
H POT RO D ZMDE MUTASYONLARDAN HASTALIK
MEKAN ZMASINA
Epidemiyolojik çalışmalar, insan kalıtsal hastalıklarının etiyolojisinin anlaşılması ve
genetik testlerin geliştirilmesi için, karşılaştırmalı veriler sağlar. Bunun yanı sıra, genetik
ve epigenetik bulgular, anlatım profilleri ve proteomiksden elde edilen bilgi birikimi,
hastalık tanısına, hastalık patogenezine neden olan moleküler mekanizmaların
anlaşılmasına ve doğru töropatik yaklaşımların geliştirilmesine ışık tutar. Bu tez çalışması
kapsamında, üç farklı hastalığa, Rett Sendromu (RTT), meme kanseri ve Konjenital
Hipotiroidizme (CH), neden olabilecek mekanizmaları aydınlatmak amacıyla genetik ve
epigenetik değişimler incelendi ve genotip-fenotip karşılaştırması yapıldı.
RTT’nin genetik temeli toplam 71 hastada incelendi. Kesin klinik tanı alan hastaların
yüzde 68.2’sinde heterojen dağılım gösteren ve hastalığa neden olduğu bilinen MECP2 gen
mutasyonları tanımlanırken, ayırımcı tanı amacıyla yönlendirilen hastaların sadece yüzde
12.5’inde mutasyonların belirlenmesi, sözkonusu genin, RTT-benzeri özellikler gösteren
hastalar için majör neden olamayacağını düşündürdü. Atipik RTT olgularında, ilk defa, gen
duplikasyon mutasyonlarının hastalığa neden olabileceği gösterildi. Hayvan
modellerindeki bulgularla örtüşen sonuçlar, duplikasyonların, MECP2 anlatımının
artmasına ve Rett Sendromunu da içeren bazı X’e bağlı geç-başlangıçlı nörodavranışsal
hastalıklara neden olabileceği olasılığını destekledi. Sonuçlar, standart teknikler ile
tanımlanamayan ekson düzenlenme bozukluklarının, mutasyonların yüzde 19.3’ünü
kapsadığını ve sözkonusu genin RTT etiyolojisine gerçek katkısının belirlenmesi açısından
özellikle RTT varyantlarında araştırılması gerektiğini gösterdi. Hastalık şiddeti skorları ile
mutasyonların tipi ve konumlarının, ve XCI paterninin karşılaştırılması temeline dayanan
genotip/fenotip korelasyonu gerçekleştirildi. Bulgular istatiksel olarak anlamlı bir
korelasyonu desteklemese de ekson delesyonu taşıyan hastaların diğer tüm mutasyon
viii
tiplerini taşıyan hastalardan daha şiddetli etkilendikleri ve ekson duplikasyonu olan
hastalarda şiddetli göz kontağı problemi olduğu bulundu. Ayrıca bilinen tüm MECP2 gen
mutasyonlarının yüzde 65’ini oluşturan ve en sık görülen yedi mutasyonun tanımlanması
amacıyla yeni bir multipleks amplifikasyon refrakter mutasyon tanımlama sistemi (ARMS)
geliştirildi ve geçerliliği sınandı. Yeni metodun RTT hastalarının moleküler genetik
analizinde kullanılabilecek elverişli, güvenilir, ve düşük maliyetli bir test olduğu gösterildi.
Bunun yanı sıra, DNA konsantrasyonunun, MECP2 ekson düzenleme bozukluklarının
belirlenmesinde kullanılan SYBER yeşili boya-bazlı Gerçek Zamanlı PCR analizinin
güvenilirliği ve tekrarlanabilirliği üzerindeki etkisi irdelendi. Ayrıca, ekson kopya
sayısının belirlenmesi çalışmalarında, DNA miktarının 1-50 ng aralığında olduğu
durumlarda Gerçek Zamanlı PCR analizinin güvenilir sonuçlar verdiği gösterildi.
Bilgimiz dahilinde, tümör dokularında hHR23A and hHR23B gen metilasyonlarının
rolünü araştıran raporlar bulunmamaktadır. Bu konuda katkı sağlamak amacıyla
sözkonusu genlerin 5’ uçları web tabanlı analiz kullanılarak karakterize edildi ve olası
promotör bölgelerinin metilasyon durumunun meme karsinogenezindeki rolü incelendi.
Analiz edilen tümör dokularında hHR23A gen hipermetilasyonunun gözlenmesi ve
hHR23B geninde korunmuş metilasyon motifleri ve transkripsiyon bağlanma bölgelerinde
metilasyon bulunması hHR23 genlerinin metilasyonunun meme kanseri oluşumunda yer
alabileceğini düşündürdü. Literatürde epigenetik değişimlerin sadece hücre hatlarında
gösterilmiş olması nedeniyle meme kanseri hastalarının tümör dokularında bu değişimlerin
araştırılması öncü bir çalışma niteliğindedir.
Tez kapsamında incelenen konjenital hipotiroidizm (CH) hastası ilk Bamford
Sendromlu olgu olması ve plazma kolin esteraz yetersizliği göstermesi nedeniyle CH’e ve
mivacurim kullanımı sonrası uzun paralize neden olan mekanizmanın aydınlatılması
amacıyla incelendi. TTF2 gen mutasyonu olduğu bilinen diğer iki hastanın aksine
hastamızda tiroid bezinin varlığının belirlenmesi insanda TTF2 mutasyonları ile ilişkili
fenotipik heterojenliğin bilinenden fazla olduğunu ortaya çıkardı. Uluslararası ortak bir
çalışma ile gerçekleştirilen işlevsel analizler de genetik mekanizmanın anlaşılmasına
yardımcı oldu ve TTF2 mutasyonlarının normal insan tiroid organogenezinde rol alan
hedef genler üzerindeki farklı etkilerine işaret eden özgün kanıt sağladı.
ix
TABLE OF CONTENTS
ACKNOWLEDGEMENTS .......................................................................................
iv
ABSTRACT ..............................................................................................................
v
ÖZET ........................................................................................................................
vii
LIST OF FIGURES ................................................................................................... xiv
LIST OF TABLES .................................................................................................... xix
LIST OF ABBREVIATIONS .................................................................................... xxi
1. INTRODUCTION ................................................................................................
1
1.1. Epigenetics ....................................................................................................
1
1.1.1. Epigenetics .........................................................................................
1
1.1.2. DNA Packaging ..................................................................................
1
1.1.3. Epigenetic Modifications ....................................................................
3
1.1.3.1. CpG and non-CpG Methylation .............................................
3
1.1.3.2. Histone Modification .............................................................
5
1.2. Rett Syndrome ..............................................................................................
6
1.2.1. Historical Background ........................................................................
6
1.2.2. Clinical and Neuropathological Charecteristics ...................................
6
1.2.3. Phenotypic Variability in RTT ............................................................
8
1.2.4. Genetic Basis of RTT .........................................................................
8
1.2.5. MECP2 Gene .....................................................................................
9
1.2.6. CDKL5 Gene .....................................................................................
11
1.2.7. MECP2 Mutation Profile ....................................................................
11
1.2.8. MeCP2 Function .................................................................................
13
1.2.8.1. Transcription Regulation and Chromatin Remodeling ...........
13
1.2.8.2. RNA Splicing ........................................................................
15
1.2.9. Mouse Models of RTT ........................................................................
17
1.2.10. MeCP2 Target Genes and Their Relevance with Disease ..................
18
1.3. Breast Cancer ................................................................................................
20
1.3.1. Breast Tissue ......................................................................................
20
1.3.2. Breast Cancer Risk .............................................................................
21
1.3.3. Breast Carcinogenesis .........................................................................
24
x
1.3.4. DNA Methylation and Genetic Instability ...........................................
27
1.3.5. DNA Repair System ...........................................................................
28
1.3.6. hHR23 (RAD23) Genes ......................................................................
31
1.4. Congenital Hypothyroidism ..........................................................................
35
1.4.1. The Thyroid Gland .............................................................................
35
1.4.2. Congenital Hypothyroidism ................................................................
36
1.4.3. Forkhead Gene Family .......................................................................
37
1.4.4. Human TTF-2 Gene ............................................................................
39
1.4.5. Thyroid Development and TTF-2 .......................................................
42
1.4.6. TTF-2 Gene Mutations .......................................................................
43
1.4.7. Plasma Cholinesterase Deficiency ......................................................
44
2. AIM .....................................................................................................................
45
3. MATERIALS .......................................................................................................
47
3.1. Subjects and Samples ....................................................................................
47
3.2. Chemicals .....................................................................................................
47
3.3. Fine Chemicals .............................................................................................
47
3.3.1. Enzymes .............................................................................................
47
3.3.2. Oligonucleotide Primers .....................................................................
48
3.3.3. DNA Size Marker ...............................................................................
51
3.4. Kits ...............................................................................................................
51
3.5. Buffers and Solutions ....................................................................................
51
3.5.1. DNA Extraction from Peripheral Blood ..............................................
51
3.5.2. Polymerase Chain Reaction (PCR) .....................................................
52
3.5.3. Agarose Gel Electrophoresis ...............................................................
52
3.5.4. Polyacrylamide Gel Electrophoresis ...................................................
53
3.5.5. Silver Staining ....................................................................................
53
3.6. Equipments ...................................................................................................
54
4. METHODS ..........................................................................................................
56
4.1. Molecular Basis of Rett Syndrome (RTT) .....................................................
56
4.1.1. DNA Extraction from Peripheral Blood ..............................................
56
4.1.2. Quantitative Analysis of the Extracted DNA .......................................
56
4.1.3. Mutation Analysis of MECP2 Gene ....................................................
57
4.1.3.1. Restriction Endonuclease Analysis ........................................
57
xi
4.1.3.2. Single Strand Conformation Polymorphism ...........................
57
4.1.3.3. Preparation of SSCP Gels ......................................................
58
4.1.3.4. SSCP Electrophoresis ............................................................
59
4.1.3.5. Silver-Staining ......................................................................
59
4.1.4. DNA Sequence Analysis ....................................................................
59
4.1.5. Quantitative Real Time PCR ...............................................................
59
4.1.6. Quantitative Fluorescent Multiplex PCR Assay ..................................
60
4.1.7. X Chromosome Inactivation ...............................................................
61
4.1.7.1. Preparation of Denaturing Polyacrlamide Gels ......................
61
4.1.7.2. Electrophoresis of PCR Products ...........................................
61
4.1.8. Clinical Severity Score Analysis .........................................................
62
4.1.8.1. Clinical Severity Score ..........................................................
62
4.1.8.2. Huppke Scoring ....................................................................
62
4.1.8.3. Statistical Analyses ...............................................................
62
4.1.9. Multiplexed ARMS-PCR Approach for the Detection of Common
MECP2
Mutations ..............................................................................
62
4.1.9.1. Primer Design .......................................................................
62
4.1.9.2. PCR Conditions ....................................................................
64
4.1.9.3. p.R106W Mutation Detection ................................................
65
4.1.9.4. PCR-RFLP and DNA Sequencing .........................................
65
4.1.10. The Effect of DNA Concentration on Reliability and Reproducibility
of SYBR Green Dye-based Real Time PCR Analysis to Detect the
exon Rearrangements Clinical Severity Score Analysis .......................
65
4.1.10.1. Preparation of DNA Samples ..............................................
65
4.1.10.2. Quantitative Real Time PCR Conditions .............................
65
4.1.10.3. Quantification .....................................................................
66
4.1.10.4. Statistical Analysis ..............................................................
66
4.2. Methylation Analyses of the Putative Promoter Region of hHR23 Genes in
Breast Tumor Tissues ....................................................................................
67
4.2.1. Non-heating DNA Extraction Protocol ...............................................
67
4.2.2. Promoter Region Analyses and Primer Design ....................................
67
4.2.3. Bisulfite Modification .........................................................................
68
4.2.4. Amplification and Sequencing of the Bisulfite Modified DNA ...........
68
xii
4.3. Molecular Basis of Congenital Hypothyroidism (CH) ...................................
69
4.3.1. Mutation Analysis of the TTF2 Gene ..................................................
69
4.3.1.1. Direct DNA Sequencing Analysis .........................................
69
4.3.1.2. AlwNI Digestion ....................................................................
70
4.3.2. Functional Characterization of p.R102C Mutant TTF2 .......................
70
4.3.3. Mutation Analysis of Butyrylcholinesterase (BChE) Gene ..................
70
5. RESULTS ............................................................................................................
72
5.1. Molecular Basis of Rett Syndrome ................................................................
72
5.1.1. Patients ...............................................................................................
72
5.1.2. Mutation Analysis of MECP2 Gene ....................................................
72
5.1.3. Quantitative PCR Analyses .................................................................
74
5.1.4. X Chromosome Inactivation Status .....................................................
84
5.1.5. Genotype–Phenotype Correlations ......................................................
85
5.1.6. Prenatal Diagnosis ..............................................................................
85
5.1.7. Multiplexed ARMS-PCR Approach for the Detection of Common
MECP2
Mutations ..............................................................................
88
5.1.7.1. Assay Optimization ...............................................................
88
5.1.7.2. Validation of the Assay .........................................................
88
5.1.8. The Effect of DNA Concentration on Reliability and Reproducibility
of SYBR Green Dye-based Real Time PCR Analysis to Detect the
Exon Rearrangements .........................................................................
90
5.1.8.1. Comparison of Quantification Methods .................................
91
5.1.8.2. Quantification .......................................................................
91
5.2. Methylation Analyses of the Putative Promoter Region of Rad23 Genes in
Breast Tumor Tissues ....................................................................................
96
5.2.1. Characterization of the 5' flanking region of the hHR23 Genes ...........
96
5.2.1.1. hHR23A Gene .......................................................................
96
5.2.1.2. hHR23B Gene .......................................................................
96
5.2.2. Bisulfite Sequencing of hHR23A and hHR23B in paraffin-embedded
tissues .................................................................................................
97
5.2.2.1. hHR23A ................................................................................
98
5.2.2.2. hHR23B ................................................................................ 103
5.3. Molecular Basis of Congenital Hypothyroidism ............................................ 110
xiii
5.3.1. Clinical Features of the Patient ........................................................... 110
5.3.2. Mutation Analysis of the TTF2 Gene .................................................. 110
5.3.3. Functional Characterization ................................................................ 113
5.3.4. Mutation Analysis of Butyrylcholinesterase (BChE) Gene .................. 113
5.3.4.1. PCR-RFLP ............................................................................ 114
6. DISCUSSION ...................................................................................................... 115
6.1. Molecular Basis of Rett Syndrome ................................................................ 115
6.1.1. Multiplexed ARMS-PCR Approach for the Detection of Common
MECP2
Mutations .............................................................................. 120
6.1.2. The Effect of DNA Concentration on Reliability and Reproducibility
of SYBR Green Dye-based Real Time PCR Analysis to Detect the
Exon Rearrangements ......................................................................... 122
6.2. Methylation Analyses of the Putative Promoter Region of hHR23 Genes in
Breast Tumor Tissues .................................................................................... 124
6.3. Molecular Basis of Congenital Hypothyroidism ............................................ 130
6.3.1. Mutation Analysis of Butyrylcholinesterase (BChE) Gene .................. 132
7. CONCLUSION .................................................................................................... 133
REFERENCES .......................................................................................................... 134
Dostları ilə paylaş: |