O‘ZBEKISTON RESPUBLIKASI
RAQAMLI TEXNOLOGIYALAR VAZIRLIGI
MUHAMMAD AL-XORAZMIY NOMIDAGI TOSHKENT AXBOROT TEXNOLOGIYALARI UNIVERSITETI
NUKUS FILIALI
Telekommunikatsiya texnologiyalari va kasbiy ta`lim
Axborot-kommunikatsiya texnologiyalari sohasida Raqamli iqtisodiyot yo’nalishi
1-bosqich talabasi
Sheripboyev Shaxriyorning
Chiziqli algebra fanidan
MUSTAQIL ISHI
Mavzu:Derterminantlarning xossalari
Tayyorlagan _________________ Sh.Sheripboyev
Qabul qilgan _________________ D.Kuvandikova
Nukus –2023
Mavzu:Derterminantlarning xossalari
Reja:
Kirish:
1.Derterminantlarning asosiy xossalari
Aosiy qism:
2. Minor va algebraik to`ldiruvchi tushinchalari
3. Laplas teoremasi
Xulosa:
Foydalangan adabiyotlar
Determinantning xossalari.
1° Agar determinant biror satrining (ustunining) barcha elementlari nolga teng bo‘lsa, u holda uning qiymati nolga teng boladi.
Masalan:
2 ° . Diagonal matritsaning determinanti diagonal elementlarining ko’paytmasiga teng, ya’ni
3 .Yuqori (quyi) uchburchakli matritsalarning determinant! ari uning bosh n diagonal elementlari ko‘paytmasiga teng.
Masalan:
4°. Determinantning biror satri (ustuni) elementlarini k=0 songa ko‘paytirish
determinantni shu songa ko‘paytirishga teng kuchlidir yoki biror satr (ustun) elementlarining umumiy ko‘paytuvchisini determinant belgisidan tashqariga chiqarish mumkin, ya’ni
5°. n-tartibli determinant uchun quyidagi tenglik o’rinli:
6°. Determinantda ikkita satr (yoki ustun) o‘rinlari almashtirilsa, determinantning ishorasi o‘zgaradi.
7°. Agar determinant ikkita bir xil satrga (ustunga) ega bo‘lsa, u holda uning qiymati nolga teng bo‘ladi.
8°. Agar determinantning biror satri (yoki ustuni) elementlariga boshqa satming (yoki ustunning) mos elementlarini biror songa ko‘paytirib qo‘shilsa, determinantning qiymati o'zgarmaydi.
9°. Agar determinant ikki satrining (ustunining) mos elementlari proporsional bo Isa, u holda uning qiymati nolga teng bo‘ladi, ya’ni
10°.Transponirlash natijasida determinantning qiymati o'zgarmaydi'
11°. Agar determinant biror satrining (ustunining) bar bir elementi ikki qo‘shiluvchi yig‘indisidan iborat bo‘lsa, u holda determinant ikki determinant yig‘indisiga teng bo‘lib, ulardan birining tegishli satri (ustuni) birinchi qo‘shiluvchilaridan, ikkinchisining tegishli satri (ustuni) ikkinchi qo‘shiluvehilaridan iborat bo‘ladi, ya’ni
12°. Agar determinant satrlaridan biri uning qolgan satrlarining chiziqli kombinatsiyasidan iborat bo‘Isa, determinant nolga teng.
13°. Toq tartibli har qanday qiya simmetrik determinant nolga teng.
14°. Bir xil tartibli ikkita matritsalar ko’paytmasining determinanti, bu matritsalar determinantlarming ko’paytmasiga teng, ya’ni
Dostları ilə paylaş: |