44. {
𝑥 − 3𝑦 − 3𝑧 = 1
4𝑥 + 𝑦 − 5𝑧 = 24
5𝑥 − 4𝑦 − 9𝑧 = 22
chiziqli tenglamalar sistemasini qanoatlantiruvchi (𝑥; 𝑦; 𝑧) dagi 𝑥 ni toping.
45.
11
3
2
1
3
2
5
2
3
z
y
x
z
y
x
z
y
x
sistemadan 𝑧 ni toping.
46.
0
6
2
x
y
va
8
3
x
y
to’g’ri chiziqlar orasidagi burchakni toping
47.
3
;
2
;
6
а
va
5
;
0
;
0
b
vektorlar orasidagi burchak topilsin.
48. (
2 −3 4
2
1
5
1
1
3
) = 𝐴 matritsaga teskari matritsaning 1-satr 1-ustun elementini toping.
49. Tenglamani yeching.
6
1
8
10
3
10
4
9
х
х
= 0.
50.
2
4
3
i
k
i
j
topilsin.
51.
𝑥−1
2
=
𝑦+2
3
=
𝑧
2
to`g`ri chiziq va 𝑥 − 𝑦 + 𝑧 + 1 = 0 tekislik kesishish nuqtasi topilsin.
52. Uchlari А(10;0), O(0;0) va С(0;4) nuqtalarda bo’lgan uchburchakning OD balandligi yotgan to`g`ri chiziq
tenglamasi topilsin.
53. 𝑥
2
+ 𝑦
2
+ 4𝑥 + 4𝑦 = 0 aylananing markazi topilsin.
54. 𝑦 = cos (5 − 6x) + 12 funksiyaning hosilasi topilsin.
55. Tomonlari o`rtalarining koordinatalari (0; −4), (2; 1) 𝑣𝑎 (−4; −1) bo’lgan uchburchak berilgan. Shu
uchburchakning (−4; −1) nuqta yotgan tomon qarshisidagi burchak topilsin.
56. Agar |𝑎⃗| = 3, |𝑏⃗⃗| = 26, |𝑎⃗ × 𝑏⃗⃗| = 72 bo`lsa, 𝑎⃗ ∙ 𝑏⃗⃗ ni toping.
57. 𝐴(−1; 1; −2) nuqtadan 𝐵(−2; 1; 3), 𝐶(1; 1; 1), 𝐷(4; −5; −2) shu uch nuqtadan utuvchi tekislikkacha
masofa topilsin.
58. (
3 −1
5 −2
) ∙ 𝑋 ∙ (
5 6
7 8
) = (
14 16
9
10
) tenglikni qanoatlantiruvchi 𝑋 matritsaning bosh diagonal elementlari
yig`indisi topilsin.
59. {
𝑥 − 3𝑦 − 3𝑧 = 1
4𝑥 + 𝑦 − 5𝑧 = 24
5𝑥 − 4𝑦 − 9𝑧 = 22
chiziqli tenglamalar sistemasini qanoatlantiruvchi (𝑥; 𝑦; 𝑧) dagi 𝑥 ni toping.
60. {
2𝑥 − 3𝑦 + 𝑧 = 5
−𝑥 + 4𝑦 − 3𝑧 = −10
4𝑥 − 2𝑦 + 𝑧 = 7
sistemadan 𝑥
2
+ 𝑦
2
+ 𝑧
2
ni toping.
61. 𝐴(−1; 2) 𝑣𝑎 𝐵(3; 5) nuqtalardan o`tuvchi to`g`ri chiziq tenglamasini toping.
62.
0
7
2
Dostları ilə paylaş: