x
y
va
15
3
x
y
to’g’ri chiziqlar orasidagi burchakni toping.
121. (
𝟐
−𝟑 𝟒
𝟐
𝟏
𝟓
𝟏
𝟏
𝟑
) = 𝑨 matritsaga teskari matritsaning 3-satr 3-ustun elementini toping.
122. Tenglamani yeching.
3
1
8
5
3
10
4
2
18
х
х
= 0.
A. 2
B. 4
C. 6
D. 1
123.
31
4
2
29
2
5
10
3
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
sistemadan 𝒙
𝟏
+ 𝒙
𝟐
+ 𝒙
𝟑
ni toping.
124.
𝒙−𝟏
𝟐
=
𝒚+𝟐
𝟑
=
𝒛
𝟐
to`g`ri chiziq va 𝒙 − 𝒚 + 𝟐𝒛 + 𝟑 = 𝟎 tekislik kesishish nuqtasi topilsin.
125.
0
;
2
;
1
а
va
0
;
0
;
5
b
vektorlar orasidagi burchak topilsin.
126. 𝒙
𝟐
+ 𝒚
𝟐
− 𝟏𝟐𝒙 + 𝟒𝒚 = 𝟎 aylananing markazi topilsin.
127. 𝒚 = 𝐜𝐭𝐠(𝟖 − 𝟑𝒙) + 𝟐 funksiyaning hosilasi topilsin.
128. Tomonlari o`rtalarining koordinatalari (𝟎; −𝟒), (𝟐; 𝟏) 𝒗𝒂 (−𝟒; −𝟏) bo’lgan uchburchak berilgan. Shu
uchburchakning (−𝟒; −𝟏) nuqta yotgan tomon qarshisidagi burchak topilsin.
129. Agar |𝒂
⃗⃗⃗| = 𝟑, |𝒃
⃗⃗⃗| = 𝟐𝟔, |𝒂
⃗⃗⃗ × 𝒃
⃗⃗⃗| = 𝟕𝟐 bo`lsa, 𝒂
⃗⃗⃗ ∙ 𝒃
⃗⃗⃗ ni toping.
130. 𝑨(−𝟏; 𝟏; −𝟐) nuqtadan 𝑩(−𝟐; 𝟏; 𝟑), 𝑪(𝟏; 𝟏; 𝟏), 𝑫(𝟒; −𝟓; −𝟐) shu uch nuqtadan utuvchi
tekislikkacha
masofa topilsin.
131. (
𝟑
−𝟏
𝟓
−𝟐
) ∙ 𝑋 ∙ (
𝟓
𝟔
𝟕
𝟖
) = (
𝟏𝟒 𝟏𝟔
𝟗
𝟏𝟎
) tenglikni qanoatlantiruvchi 𝑿 matritsaning bosh diagonal
elementlari yig`indisi topilsin.
132. {
𝒙 − 𝟑𝒚 − 𝟑𝒛 = 𝟏
𝟒𝒙 + 𝒚 − 𝟓𝒛 = 𝟐𝟒
𝟓𝒙 − 𝟒𝒚 − 𝟗𝒛 = 𝟐𝟐
chiziqli tenglamalar sistemasini qanoatlantiruvchi (𝒙; 𝒚; 𝒛) dagi 𝒙, y, zni toping.
133. Uchlari 𝐴(0; 0; −3), 𝐵(−1; 3; 4), 𝐶(0; 2; 2) nuqtalarda bo’lgan uchburchakning yuzi topilsin.
134.
0
8
2
x
y
va
21
3
x
y
to’g’ri chiziqlar orasidagi burchakni toping.
135. (
2
−3 4
2
1
5
1
1
3
) = 𝐴 matritsaga teskari matritsaning 2-satr 3-ustun elementini toping.
136. Tenglamani yeching.
6
2
16
5
3
10
2
9
х
х
= 0.
137. 𝑦
2
= 6𝑥 parabolaning direktrisa tenglamasini toping.
138.
7
;
0
;
1
а
va
0
;
1
;
3
b
vektorlar orasidagi burchak topilsin.
139.
𝑥−1
−2
=
𝑦+2
4
=
𝑧−1
2
to`g`ri chiziq va 2𝑥 − 𝑦 + 𝑧 + 1 = 0 tekislik kesishish nuqtasi topilsin.
140. 𝑥
2
+ 𝑦
2
− 4𝑥 − 4𝑦 = 0 aylananing markazi topilsin.
141. 𝑦 = ln(4𝑥 − 6) + 2𝑥 − 1 funksiyaning hosilasi topilsin.