1.Ikkita nol bo`lmagan kollinear vektorlarning skalyar ko`paytmasi nimaga teng?
2. Uchlari А(-5;3), В(-1;0) va С(2;4) nuqtalarda bo’lgan uchburchakning perimetri topilsin.
3.
5
2
7
8
2
46
3
5
3
3
2
1
3
2
1
3
2
1
x
x
x
x
x
x
x
x
x
chiziqli tenglamalar sistemasi uchun 𝑥
1
+ 𝑥
2
+ 𝑥
3
topilsin.
4. Tenglamani yeching.
3
1
8
5
3
10
2
9
х
х
= 0.
5.
М (-1;1) nuqtadan o`tib 3х-у+2=0 to’g’ri chiziqqa perpendikulyar o’tkazilgan to’g’ri chiziq tenglamasi
topilsin
6. Qirralari
1; 4; 2
а
,
0 ; 4; 1
b
va
2; 4;1
с
vektorlardan iborat piramidaning hajmi topilsin
7. (
2
−3 4
2
1
5
1
1
3
) = 𝐴 matritsaga teskari matritsaning 2-satr 3-ustun elementini toping.
8.
2
2
3
20
x
y
ellipsning o’qlari orasidagi burchakni teng ikkiga bo’luvchi vatar uzunligi topilsin.
9.
М
1
(3;2;-1) nuqtadan o’tib
2
;
0
;
1
N
normal vektorga ega tekislik tenglamasi yozilsin.
10. 𝑦 = 1 + 3𝑡𝑔𝑥 funksiyaning hosilasini toping
11. Tomonlari o`rtalarining koordinatalari (0; −4), (2; 1) 𝑣𝑎 (−4; −1) bo’lgan uchburchak berilgan. Shu
uchburchakning (−4; −1) nuqta yotgan tomon qarshisidagi burchak topilsin.
12. Agar |𝑎⃗| = 3, |𝑏⃗⃗| = 26, |𝑎⃗ × 𝑏⃗⃗| = 72 bo`lsa, 𝑎⃗ ∙ 𝑏⃗⃗ ni toping.
13. 𝐴(−1; 1; −2) nuqtadan 𝐵(−2; 1; 3), 𝐶(1; 1; 1), 𝐷(4; −5; −2) shu uch nuqtadan utuvchi
tekislikkacha
masofa topilsin.
14. (
3 −1
5 −2
) ∙ 𝑋 ∙ (
5 6
7 8
) = (
14 16
9
10
) tenglikni qanoatlantiruvchi 𝑋 matritsaning
bosh diagonal elementlari
yig`indisi topilsin.
15. {
𝑥 − 3𝑦 − 3𝑧 = 1
4𝑥 + 𝑦 − 5𝑧 = 24
5𝑥 − 4𝑦 − 9𝑧 = 22
chiziqli tenglamalar sistemasini qanoatlantiruvchi (𝑥; 𝑦; 𝑧) dagi 𝑥 ni toping.
«
16. Matritsani kо‘paytiring.
3
2
1
3
1
2
17.
0
6
2
2
x
y
x
aylana va
0
2
y
x
to`g`ri chiziqning kesishish nuqtalari topilsin.
18.
3
;
2
;
6
а
va
0
;
0
;
5
b
vektorlar orasidagi burchak topilsin.
19. (
2 −3 4
2
1
5
1
1
3
) = 𝐴 matritsaga teskari matritsaning 1-satr 3-ustun elementini toping.
20. Tenglamani yeching.
3
1
8
15
9
30
4
2
18
х
х
= 0.
21.
31
4
2
29
2
5
10
3
3
2
1
3
2
1
3
2
1