Aniqmas integralni o’zgaruvchini almashtirish bilan integrallash. Aniqmas integralni bo’laklab integrallash. Kvadrat uchhad qatnashgan integrallarni hisoblash
Aniqmas integralni bevosita hisoblash mumkin bo’lmagan hollarda qo’llash mumkin bo’lgan usullardan biri o’zgaruvchini almashtirish usulidir. Bunda berilgan integraldagi o’zgaruvchidan yangi o’zgaruvchiga biror funksiya orqali o’tiladi. Bunda funksiya differensiallanuvchi, hosilasi uzluksiz hamda unga teskari mavjud deb olinadi. Bu holda
tenglik o’rinli bo’ladi. Bu tenglikning o’ng tomonidagi integral hisoblangandan so’ng, o’zgaruvchi o’rniga qo’yilib, berilgan integralning javobi olinadi. Berilgan integralni yuqoridagi tenglik yordamida hisoblash o’zgaruvchini almashtirish usuli deyiladi. Berilgan integralni bevosita hisoblash mumkin bo’lmagan holda qo’llash mumkin bo’lgan usullardan yana biri bo’laklab integrallash usulidir. Aytaylik, va funksiyalar differensiallanuvchi funksiyalar bo’lsin. U holda bo’lib, undan ni hosil qilamiz. Bu tenglikning ikkala tomonini hadma-had integrallab yoki ni hosil qilamiz. Bunga bo’laklab integrallash formulasi deyiladi. Bu formula hisoblash ancha qiyin bo’lgan integralni hisoblashni soddaroq bo’lgan inntegralni hisoblashga olib keladi. Demak, berilgan integralni bo’laklab integrallash formulasi orqali hisoblashni quyidagi algoritm (ketma-ketlik) asosida amalga oshirish mumkin: 1) Integral ostidagi ifoda ikki bo’lakka ajratiladi; 2) Hosil bo’lgan bo’laklardan qatnashganini , ikkinchisini esa orqali belgilanadi; 3) Hosil qilingan differensial bo’yicha biror boshlang’ich funksiya topiladi. Buning uchun aniqmas integralni hisoblab, unda ixtiyoriy o’zgarmas son olinadi; 4) funksiya bo’yicha differensial topiladi;