1-mustaqil ishi erlang. Pirson qonunlari Reja



Yüklə 157,51 Kb.
səhifə1/4
tarix30.04.2023
ölçüsü157,51 Kb.
#105196
  1   2   3   4
1-mustaqil ishi ehtimollik statistikasi 13-20


Muhammad Al-Xorazmiy nomidagi Toshkent Axborot Texnologiyalari Universiteti Qarshi filiali
TT va KI fakulteti KI-14-20s guruh talabasining
Ehtimollik va statistika fanidan
1-MUSTAQIL ISHI
Erlang. Pirson qonunlari
Reja:
I. Kirish.
II. Asosiy qism: Erlang taqsimot qonuni Normallashtirilgan Erlang taqsimot qonuni.
Pirson qonunlari. Pirsonning moslik kriteriyasi.
Kirish. Ehtimollar nazariyasi —tasodifiy tajribalar, ya'ni natijasini oldindan aytib bo'lmaydigan tajribalardagi qonuniyatlatni o'rganuvchi matematik fandir. Bunda shunday tajribalar qaraladiki, ularni o'zgarmas (ya'ni, bir xil) shartlar kompleksida hech bo'lmaganda nazariy ravishda ixtiyoriy sonda takrorlash mumkin, deb hisoblanadi. Bunday tajribalar har birining natijasi tasodifiy hodisa ro'y berishidan iboratdir. Insoniyat faoliyatining deyarli hamma sohalarida shunday holatlar mavjudki, u yoki bu tajribalarni bir xil sharoitda ko'p matra takrorlash mumkin bo'ladi. Ehtimollar nazariyasini sinovdan-sinovga o'tishida natijalari turlicha bo'lgan tajribalar qiziqtiradi. Biror tajribada ro'y berish yoki bermasligini oldindan aytib bo'lmaydigan hodisalar tasodifiy hodisalar deyiladi. Masalan, tanga tashlash tajribasida har bir tashlashga ikki tasodifiy hodisa mos keladi: tanganing gerb tomoni tushishi yoki tanganing raqam tomoni tushishi. Albatta, bu tajribani bir marta takrorlashda shu ikki tasodifiy
hodisalardan faqat bittasigina ro'y beradi. Tasodifiy hodisalarni biz tabiatda, jamiatda,
ilmiy tajribalarda, sport va qimor
o'yinlarida kuzatishimiz mumkin. Umumlashtirib aytish mumkinki, tasodifiyat
elementlarisiz rivojlanishni tasavvur qilish qiyindir. Tasodifiyatsiz umuman hayotning va
biologik turlarning yuzaga kelishini, insoniyat tarihini, insonlarning ijodiy faoliyatini,
sotsial-iqtisodiy tizimlarning rivojlanishini tasavvur etib bo'lmaydi. Ehtimollar nazariyasi
esa aynan mana shunday tasodifiy bog'liqliklarning matematik modelini tuzish bilan shug'illanadi. Tasodifiyat insoniyatni doimo
qiziqtirib kelgandir. Shu sababli ehtimollar nazariyasi boshqa matematik fanlar kabi
amaliyot talablariga mos ravishda rivojiangan. Ehtimollar nazariyasi boshqa matematik fanlardan farqli o'laroq nisbatan qisqa, ammo o'ta shijoatlik rivojlanish tarixiga ega. Endi qisqacha tarixiy ma'lumotlarni keltiramiz. Ommaviy tasodifiy hodisalarga mos masalalarni sistematik ravishda o'rganish va ularga mos matematik apparatning yuzaga kelishi XVII asrga to'g'ri keladi. XVII asr boshida, mashhur fizik Galiley fizik o’lchashlardagi xatoliklarni tasodifiy deb hisoblab, ularni ilmiy tadqiqot qilishga uringan. Shu davrlarda kasallanish, o’lish, baxtsiz hodisalar statistikasi va shu kabi ommaviy tasodifiy hodisalardagi qonuniyatlarni tahlil qilishga asoslangan sug’urtalanishning
Erlang tarqatish qonuni. Erlang taqsimot K-tartibli Erlang taqsimoti - bu taqsimot
ifodalovchi birma-bir taqsimlangan k mustaqil tasodifiy o'zgaruvchilar yig'indisi va a parametri bilan bir xil eksponent qonun. Funktsiya va k-
tartibli Erlang taqsimot zichligi quyidagi shaklga ega:
umumiy nazariyasini yaratishga ham urinishlar bo’lgan.
uzluksiz X tasodifiy o'zgaruvchini ta'riflash (0; + ro) oralig'idagi ijobiy qiymatlar va

Yüklə 157,51 Kb.

Dostları ilə paylaş:
  1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin