10 мавзу: To`g`ri burchakli dekart koordinatalar sistemasida to`g`ri chiziq va u bilan bog`liq metrik masalalar



Yüklə 240,3 Kb.
tarix19.02.2023
ölçüsü240,3 Kb.
#84913
10 мавзу To`g`ri burchakli dekart koordinatalar sistemasida to` (1)


10 – мавзу: To`g`ri burchakli dekart koordinatalar sistemasida to`g`ri chiziq va u bilan bog`liq metrik masalalar.
Режа:
1. Tekislikdagi ikki to’g’ri chiziq orasidagi burchak.
2. Nuqtadan to’g’ri chiziqqacha bo‘lgan masofa

Tekislikdagi ikki to’g’ri chiziq orasidagi burchak.




Tekislikdagi to’g’ri burchakli dekart koordinatalar sistemasi berilgan bo’lsin. Bu koordinatalar sistemasiga nisbatan
d1 va d2 to’g’ri chiziq tenglamalari
d1: A1x + B1y + C1 = 0;
d2: A2x + B2y + C2 = 0. (25.1)
bilan berilgan bo’lsin.
d1 va d2 to’g’ri chiziqlarning yo’naltiruvchi vektorlari mos ravishda
(-B1,A1), (-B2,A2) lardan iborat.

Ta’rif. Ikkita to’gri chiziq orasidagi burchak deb, bu to’g’ri chiziqlarning yo’naltiruvchi vektorlar orasidagi burchakka aytiladi . (45-chizma)


(25.2)
Ikki to’g’ri chiziq orasidagi burchak (25.2) formula bilan hisoblanadi.
Xususiy holda d1d21
A1A2 + B1B2 = 0. (25.3)
bu shart ikki to’g’ri chiziqning perpendikulyarlik shartidir.
To’g’ri burchak dekart koordinatalar sistemasiga nisbatan d1 va d2 to’g’ri chiziqlar o’zlarining burchak koeffitsientli tenglamalari bilan berilgan bo’lsin, ya’ni
d1: y = k1x + b1;
d2: y = k2x + b2. (25.4)
Bu to’g’ri chiziqlar orasidagi burchakni hisoblash formulasini chiqaraylik.
d1 va d2 to’g’ri chiziqlarni absissa o’qining musbat yo’nalishi bilan tashkil qilgan burchaklarini mos ravishda 1 va 2 bilan belgilaymiz (46-chizma), u holda
k 1=tg1, k2=tg2 va ( ^ )=,
=2-1

bundan
(25.6)
Ikki to’g’ri chiziq orasidagi burchakni hisoblash formulasi.
d1d2 bo’lgan holda , deyish mumkin. Bundan
yoki
(25.7)
(25.7) tenglik d1, d2 to’g’ri chiziqlarning perpendikulyarlik sharti. Agar d1||d2 bo’lsa 2 - 1 = 0 yoki k2 - k1 = 0
k2 = k1 (25.8)
bu esa d1 ,d2 to’g’ri chiziqlarning parallellik shartidir.
2-masala. d1 va d2 to’g’ri chiziqlar
d1: x + 7y 5 = 0,
d2: 3x 4y + 20 = 0.
tenglamalari bilan berilgan, ular orasidagi burchakni toping.
Yechish d1 to’g’ri chiziqning burchak koeffitsienti , d2 to’g’ri chiziqning burchak koeffitsienti , (25.6) formulaga ko’ra

Demak, = 45°.

Nuqtadan to’g’ri chiziqqacha bo‘lgan masofa


Nuqtadan to’g’ri chiziqqacha bo’lgan masofani hisoblash formulasini chiqaraylik.
Tekislikdagi d to’g’ri chiziq umumiy tenglamasi
d: Ax + By+C = 0 (26.1)
bilan berilgan bo’lsin. (-B,A) uning yo’naltiruvchi vektori.
Ta’rif. To’g’ri chiziqning yo’naltiruvchi vektoriga perpendikulyar har qanday vektorni bu to’g’ri chiziqning normal vektori deyiladi.
(A,B) vektor d to’g’ri chiziqning normal vektori bo’ladi. Haqiqatan ham, va vektorlarning skalyar ko’paytmasi:
= -BA +AB = 0 .
D emak, to’g’ri chiziqning umumiy tenglamasidagi A,B sonlar shu tartibda olingan shu tenglama bilan aniqlangan to’g’ri chiziq normal vektorining koordinatalarini bildiradi.
(26.1) tenglama bilan aniqlanuvchi d to’g’ri chiziq va bu to’g’ri chiziqda yotmaydigan M0(x0,y0) nuqta berilgan bo’lsin. M0 nuqtadan d to’g’ri chiziqqa perpendikulyar tushuramiz va uning asosini H bilan belgilaymiz (47-chizma).
vektor uzunligini M0 nuqtadan d to’g’ri chiziqqacha bo’lgan masofa deyiladi va (M0,d) ko’rinishda yozamiz.
Agar M0d bo’lsa, (M0,d)=0 bo’ladi. M0d bo’lsin, u holda (M0,d)=| |.
vektor d to’g’ri chiziqning normal vektori bo’lgani
uchun vektorga kollinear.Vektorning skalyar ko’paytmasi ta’rifiga ko’ra
= | || |cos( , )= (M0,d)| |(1)
Shunday qilib, (26.2)
H nuqtaning koordinatalari H(x1,y1) bo’lsa,
=A(x0-x1)+B(y0-y1)=Ax0+By0-(Ax1+By1) u holda
Ax1 + By1 + C = O bundan C=-(Ax1+By1)
= Ax0 + By0 + C, ekanligini e’tiborga olib (26.2) formulani quyidagicha yozamiz.
(26.3)
Bu formula berilgan nuqtadan d to’g’ri chiziqqacha bo’lgan masofani hisoblash formulasidir.
3-masala. Koordinatalar boshidan 3x-4y-2=0 to’g’ri chiziqqacha bo’lgan masofani toping.
(10.21) formuladan

Foydalaniladigan adabiyotlar ro’yxati


Asosiy adabiyotlar:
1. Н.Д.Додажонов, М.Ш.Жўраева. Геометрия. 1-қисм, Тошкент. «Ўқитувчи», 1996 й. (ўқув қўлланма)
2. X.X.Назаров, X.O.Oчиловa, Е.Г.Подгорнова. Геометриядан масалалар тўплами. 1 ва 2 қисм. Тошкент «Ўқитувчи» 1993, 1997. (ўқув қўлланма)
Qo’shimcha adabiyotlar:
1. Baxvalov M. Analitik geometriyadan mashqlar to’plami. Toshkent UzMU, 2006 y. 2.K.X. Aбдуллаев и другие Геометрия 1-часть. Тошкент, «Ўқитувчи» 2002й.
3.K.X. Aбдуллаев и другие. Сборник задач по геометрии. Тошкент, “Ўқитувчи” 2004 г.
Yüklə 240,3 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin