Siljimagan baho. Agarda statistik bahoning matematik kutilmasi noma`lum parametrga teng, ya`ni
(1.2.1)
bo`lsa, statistik baho siljimagan baho deyiladi.
Agar statistik baho uchun bo`lsa, u siljigan baho deyiladi va -siljish kattaligi bo`ladi.
Noma`lum parametr X to’plamning matematik kutilmasi va lar unga mos kuzatilmalar bo`lsin. Quyidagi statistikani kiritamiz
. (1.2.2)
Bu yerda -lar tenglikni qanoatlantiruvchi o`zgarmas sonlar. va demak, matematik kutilmani hisoblash qoidasidan
(1.2.3)
ega bo`lamiz. Bu tenglikdan (2) statistikaning noma`lum parametr uchun siljimagan baho ekanligi kelib chiqadi. Xususan, bo`lsa (1.2.2) dan statistikaga, agarda bo`lsa statistikaga ega bo`lamiz. (1.2.3) munosabat tenglik bajariladigan ixtiyoriy lar uchun to`g`ri bo`lganligidan va statistikalar ham noma`lum parametr uchun siljimagan baho ekanligi kelib chiqadi. Demak, bitta parametr uchun bir nechta siljimagan baho tuzish mumkin ekan. Bu xulosadan, tabiiy, siljimagan baholarni taqqoslash zaruriyati kelib chiqadi.
Optimal baho.Noma`lum parametr uchun siljimagan baholar to`plamini U bilan belgilaylik. Bizga ma`lumki, tasodifiy miqdor (to’plam) dispersiyasi shu t.m.ning qiymatlari uning matematik kutilmasi atrofida qanchalik zich yoki tarqoq joylashganligining mezoni bo`ladi. Shuning uchun, tabiiy, siljimagan baholarni ularning dispersiyasiga ko`ra taqqoslaymiz.
Faraz qilaylik, ( ) va ( ) lar noma`lum parametr uchun siljimagan baholar bo`lsin, ( ) va ( ) . Agarda shu statistikalar uchun
( )< ( )
munosabat bajarilsa, ( ) baho ( ) bahodan aniqroq baho deyiladi.
Demak, bitta parametr uchun bir necha siljimagan baholar mavjud bo`lsa, uning statistik bahosi sifatida aniqroq bahoni qabul qilish maqsadga muvofiq bo`ladi. Yuqorida biz noma`lum matematik kutilma uchun ikkita siljimagan va -lardan iborat bo`lgan baholarni ko`rdik. Endi ularni taqqoslaylik. Dispersiyani hisoblash qoidasiga asosan:
(1.2.4)
va bo`ladi. yuqorida keltirilgan taqqoslash qoidasiga muvofiq, ko`rinib turibdiki baho bahoga nisbatan aniqroq bo`ladi.
Agar ( ) bo`lsa, - statistik baho optimal baho deyiladi.
Ko`rsatish mumkinki statistika noma`lum matematik kutilma uchun barcha siljimagan chiziqli baholar ichida eng aniq (optimal) bahodir.