y(0):=1: D(y)(0):=0:f;
y(x) 1 x2 1 x3 O(x4 )
6
Koshi masalasining to 6-chi tartibli darajali qator ko’rinishida yaqinlashuvchi
yechimini hamda aniq yechimlarini topamiz: y y 3(2 x2 ) sin x , y(0) 1 , y(0) 1, y(0) 1 . Aniq hamda yaqinlashuvchi yechimlarining grafigini solishtirish uchun bitta rasmda chizamiz.
restart; Order:=6:
de:=diff(y(x),x$3)-diff(y(x),x)= 3*(2-x^2)*sin(x);
2
3
x
y( x) 3(2 x ) sin(x)
de:= y( x)
x
3
Fan: Kompyuter algebrasi tizimlari O’qituvchi: T.Djiyanov
II-kurs
7-Mavzu..
2 2 4 4
cond:=y(0)=1, D(y)(0)=1, (D@@2)(y)(0)=1;
cond:=y(0)=1, D(y)(0)=1, D(2)(y)(0)=1
dsolve({de,cond},y(x));
y(x)= 21 cos( x) 3 x2 cos( x) 6x sin(x) 12 7 ex 3 e(x)
2 6 24 120
y1:=rhs(%):
dsolve({de,cond},y(x), series);
y(x)=1 x 1 x2 1 x3 7 x4 1 x5 O(x6 )
Differensial operatorlarning faktorizasiyasi
Bu bo'limda yopiq holatdagi yechimlar va boshqa faktorizasiya opsiyalariga ta'luqli bo'limlar mavjud.
Differensial tenglamalarning yopiq shakldagi yechimlarini topish quyidagi uchinchi tartibdagi differensial tenlamaga e'tibor qarating
ode := (-x-x^3)*y(x)-2*x^2*diff(y(x),x)+(x^3+x)*diff(y(x),x$2)+x^2*diff(y(x),x$3);
3
3
ode := ( x x ) y( x ) 2 x dx y( x ) ( x x )
2 d d2
dx
2
y( x ) x
2 d3
dx
3
y( x )
II-kurs
7-Mavzu..
Fan: Kompyuter algebrasi tizimlari O’qituvchi: T.Djiyanov
Ushbu ODEning yopiq shakldagi yechimlarini
mumkin.
topish uchun differensial Tenglamani differensial
Bu shuni ko'rsatadiki
(ko'paytuvchilarga ajratish yagona emas):
right_fact := ode_fact[2];
homogeneous
Berilgan differensial tenglamaning har qanday yechimi tenglamaning yechimi bo'ladi. Bu quyidagi natijaga olib keladi:
ode2 := diffop2de( right_fact, [DF,x], y(x) );
dsolve( ode2, y(x) );
operatorlarining faktorizasiyasini ishlatish operatorga o'zgartirish mumkin:
dode := de2diffop(ode,y(x), [DF,x]);
dode := x2 DF3 ( x3 x ) DF2 2 x2 DF x3 x
va quyidagicha ko'paytuvchilarga ajratiladi:
ode_fact := DFactor( dode, [DF,x] );
bitta faktorlash to'g'ri ko'paytuvchiga ega bo'ladi
ode_fact := x DF x ( 2 x ), DF
2 2 2
DF x2 1
x
x2
right_fact := DF
2
DF x2 1
x
x2
ode2 :=
x2
d y( x )
x
( x2 1 ) y( x ) dx d2
dx
2
y( x )
Fan: Kompyuter algebrasi tizimlari
O’qituvchi: T.Djiyanov
II-kurs
7-Mavzu..
Qolgan javoblar tartibni kamaytirish orqali yuqoridagi ikkita javobdan foydalangan holda aniqlanishi mumkin. Bu aslida dsolve da avval boshdagi ODEni yechish uchun qo'llanilgan metoddir:
y( x ) _C1 x BesselI( 0, x ) _C2 x BesselK( 0, x )
y( x ) _C1 x BesselI( 0, x ) _C2 x BesselK( 0, x ) _C3 x
BesselI( 0, x )
BesselK( 0, x ) e( 1/2 x2 )
x2
dx
BesselI( 0, x ) e( 1/2 x2 )
x2
dx
II-kurs
7-Mavzu..
Fan: Kompyuter algebrasi tizimlari O’qituvchi: T.Djiyanov
Dostları ilə paylaş: |