Aniq integral yordamida tekis shakilni yuzini hisoblash


Aniq integral yordamida egri chiziq yoyini uzunligini hisoblash va misollar



Yüklə 366,81 Kb.
səhifə2/5
tarix18.06.2022
ölçüsü366,81 Kb.
#61761
1   2   3   4   5
To\'rayev Gulom

Aniq integral yordamida egri chiziq yoyini uzunligini hisoblash va misollar

Maktab geometriyasida tekislikdagi egri chiziqlardan faqat aylana va uning yoylari uzunligini hisoblash formulasi beriladi. Parabola, giperbola, sinusoida kabi egri chiziqlarning turli yoylari uzunligini hisoblash masalasi amaliyotda kerak bo‘ladi. Bu masala ham aniq integral yordamida o‘z yechimini topadi.

6-rasm
у=f(x), x[a,b], funksiya bilan berilgan egri chiziqning AB yoyi uzunligini topish masalasini qaraymiz
Bunda f(x) differensiallanuvchi va uning f′(x) hosilasi [a,b] kesmada uzluksiz deb hisoblaymiz. Berilgan [а,b] kesmani
а=х0 <х1<х2< ∙∙∙<хi-1<хi< ∙∙∙<xn=b
nuqtalar bilan ixtiyoriy n bo‘lakka ajratamiz. Natijada AB yoy n ta kichik Ai–1 Ai (i=1, 2, ∙∙∙, n) yoychalarga ajraladi.

Agar AB yoy uzunligi l va Ai–1 Ai (i=1, 2, ∙∙∙, n) yoychalar uzunliklari Δli deb olsak, unda



deb yozish mumkin. Endi kichik Ai–1 Ai (i=1, 2, ∙∙∙, n) yoychalarni ularning vatari , ya’ni Ai–1Ai kesmalar bilan almashtiramiz. To‘g‘ri burchakli Ai–1AiD uchburchakda
|Ai–1D|= xi –xi–1 xi , |AiD|=f(xi)–f(xi–1)=Δ f(xi)
katetlar bo‘yicha Ai–1Ai gipotenuza uzumligini Pifagor teoremasidan foydalanib topamiz:
.
Bu yerda Δli |Ai–1Ai| deb, izlanayotgan yoy uzunligi l uchun ushbu taqribiy tenglikni hosil etamiz:
.
Bu taqribiy tenglikdan aniq tenglikka o‘tish uchun n→∞, Δn→0 deb olamiz. Bu holda, hosila ta’rifiga asosan,

deb olish mumkin. Shu sababli yuqoridagi Ln yig‘indini funksiya uchun [a,b] kesma bo‘yicha integral yig‘indi deb qarash mumkin. Unda, aniq integral ta’rifiga asosan, izlanayotgan yoy uzunligi l uchun quyidagi formulani hosil etamiz:
. (6)
Misol sifatida y=lnsinx egri chiziqning x=π/3 va x=π/2 abssissali nuqtalari orasidagi yoyining uzunligini topamiz. Bunda y′=ctgx ekanligidan va universal almashtirmadan foydalanib, (6) formulaga asosan, ushbu natijani olamiz:

.
Agar egri chiziq x=φ(t) , y=ψ(t) ( t[α, β]) parametrik tenglamasi bilan berilgan bo‘lsa, unda dx= φ′(t)dt , dy= ψ′(t)dt va

bo‘lgani uchun (6) formula quyidagi ko‘rinishga keladi:
. (7)
Misol sifatida x=etcost , y=etsint (t[0,lnπ]) parametrik tenglamasi bilan berilgan egri chiziq yoyi uzunligini topamiz. Bunda
x′=φ′(t)= et(cost–sint) , y′=ψ′(t)= et(cost+sint)
bo‘lgani uchun, (7) formulaga asosan, quyidagi javobga ega bo‘lamiz:
.
To’g’ri burchakli koordinatlar sistemasida kesmada silliq (ya’ni hosila uzluksiz) bo’lsa, bu egri chiziq yoyining uzunligi
(5)
formula yordamida hisoblanadi.
Egri chiziq parametrik tenglama

Parametrik tenglamalar bilan berilgan bo’lsa, bu egri chiziqning parametrning monoton o’zgarishiga mos yoyning uzunligi bilan berilgan bo’lsa, yoy uzunligi

aniq integral bilan hisoblanadi.
Agar silliq egri chiziq qutb koordinatalarida tenglama bilan berilgan bo’lsa, yoy uzunligi
(6)
formula bilan hisoblanadi.
Tekislikda to’g’ri burchakli koordinatalar sistemasida egri chiziq tenglama bilan berilgan bo’lsin.
Bu egri chiziqning x=a va x=b vertical to’g’ri chiziqlar orasidagi AV yoyining uzunligini topamiz

AB yoyda abstsissalari bo’lgan A, M1, M2,…,Mi,…B nuqtalarni olamiz va AM1, M1M2,…Mn-1 B vatarlarni o’tkazamiz, ularning uzunliklarini mos ravishda bilan belgilaymiz.
AB yoy ichiga chizilgan aniq chiziqning uzunligi
bo’lgani uchun AB yoyning uzunligi
(1)
bo’ladi.
Faraz qilaylik, funksiya va uning hosilasi [a, b] kesmada uzluksiz bo’lsin.
U holda

Yoki Lagranj teoremasiga asosan
bunda
bo’lgani uchun
bo’ladi
Ichki chizilgan siniq chiziqning uzunligi esa
bo’ladi Shartga ko’ra funksiya uzluksiz. Demak, funksiya ham uzluksizdir. Shuning uchun integral yig’indining limiti mavjud va u qo’yidagi aniq integralga teng.

Demak, yoy uzunligini hisoblash formulasi:
(2)
ekan.
Endi egri chiziq tenglamasi
(3)
Parametric ko’rinishda berilgan bo’lsin, bunda uzluksiz hosilali uzluksiz funksiyalar va berilgan oraliqda nolga aylanmaydi.
Bu holda (3) tenglama biror funksiyani aniqlaydi.
Bu funksiya uzluksiz bo’lib uzluksiz hosilaga ega, bo’lsin (6) integralda almashtirish bajaramiz. U holda
(4)
Agar egri chiziq fazoda
(5)
Parametric tenglamalar bilan berilgan va funksiyalar [a, b] kesmada uzluksiz hamda uzluksiz hosilalarga ega bo’lsa, egri chiziq aniq limitlarga ega bo’ladi va u
(6)
Formula bilan aniqlanadi.

Yüklə 366,81 Kb.

Dostları ilə paylaş:
1   2   3   4   5




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin