Aylanma jismlarining hajmini hisoblash. Endi у=f(x), x[a,b], funksiya grafigi orqali hosil qilingan egri chiziqli trapetsiyaning OX koordinata o‘qi atrofida aylanishdan hosil bo‘lgan J aylanma jismning (80-rasmga qarang) V hajmini topish masalasini ko‘ramiz.
Bunda aylanma jismning ko‘ndalang kesimlari doiralardan iborat bo‘lib, ularning yuzasi S(х)=f 2(x) funksiya bilan ifodalanadi. Demak, (8) formulaga asosan, aylanma jism hajmi V uchun ushbu formulaga ega bo‘lamiz:
. (9)
Misol sifatida oldin ko‘rib o‘tilgan doiraviy konusning hajmini yana bir marta hisoblaymiz. Bu konusni uning y=Rx/h tenglamali yasovchisini OX koordinata o‘qi atrofida aylanishidan hosil bo‘lgan aylanma jism deb qarash mumkin ya shu sababli, (9) formulaga asosan,
natijaga, ya’ni oldin hosil qilingan formula o‘rinli ekanligiga yana bir marta ishonch hosil etamiz.
Yana bir misol sifatida yarim o‘qlari a va b bo‘lgan ellipsni OX o‘q atrofida aylantirishdan hosil bo‘ladigan ellipsoidning hajmini topamiz. Ellipsning kanonik tenglamasidan (V bob,§3, (7))
ekanligini topamiz. Bu natijani (7) formulaga qo‘yib, ellipsoidning V hajmini hisoblaymiz:
.
Agar bunda a=b=R deb olsak, unda ellipsoid radiusi R bo‘lgan sharga aylanadi va bu holda sharning halmi uchun yuqoridagi natijadan bizga maktabdan tanish bo‘lgan V=4πR3/3 formula kelib chiqadi.
chiziqlar bilan chegaralangan figuraning OX o’qi atrofida ay lanishidan hosil bo’lgan jismning hajmi
(7)
aniq integral bilan hisoblanadi.
chiziqlar bilan chegaralangan figuraning o’qi atrofida aylanishidan hosil bo’lgan jismning hajmi
(8)
formula bilan hisoblanadi.
Agar yuz jismning o’qqa perpendikulyar tekslik bilan kesishishidan hosil bo’lgan kesim bo’lib, kesmada uzluksiz funksiya bo’lsa, jismning hajmi
formula bilan hisoblanadi.
Agar chiziqlar bilan chegaralangan figuraning o’qi atrofida ay lanishidan hosil bo’lgan jismning hajmi
formula bilan hisoblanadi.
Agar va (bu yerda ) egri chiziqlar hamda to’g’ri chiziqlar bilan chegaralangan figura o’qi atirofida aylansa, aylanish jismning hajmi
formula bo’yicha hisoblanadi.
Agar shu figuraning o’zi o’q atirofida aylansa aylanish jismning hajmi
formula bilan hisoblanadi.
Agar va egri chiziqlar va to’g’ri chiziqlar bilan chegaralangan figura o’qi atirofida aylansa, u holda aylanish jismining hajmi
formula bilan hisoblanadi.
Agar shu figuraning o’zi o’qi atirofida aylansa, u holda aylanish jismining mos hajmi ushbuga teng bo’ladi: