Another Bias Correction Method John Ashburner


E = -log{P(y|)} = -i log{k k k(yi)}



Yüklə 0,75 Mb.
səhifə5/6
tarix28.12.2021
ölçüsü0,75 Mb.
#17120
1   2   3   4   5   6

E = -log{P(y|)} = -i log{k k k(yi)}

  • In fact, k(yi) does not need to be a Gaussian density. It could be a B-spline with local support. In the limiting case of zeroeth and first degree B-splines, maximising this cost function is equivalent to generating a simple histogram of the data. E has a simple relationship with the entropy.

  • The bias correction model will also fit within this framework:

  • E = -log{P(y|,)} = -i log{i() k k k(i()yi)}



  • B-spline Density Representations

    • The algorithm is iterative, and involves alternating between:

      • Re-estimating , while holding fixed.
      • Re-estimating , while holding fixed.
    • Re-estimating involves building a probability density representation of the data, which have been corrected with the current bias estimate.

      • Simplest case involves generating a simple histogram.
      • An iterative method is needed for B-splines of degree greater than 1.
        • Similar to algorithm for ML-EM reconstruction of PET images.

    • Yüklə 0,75 Mb.

      Dostları ilə paylaş:
    1   2   3   4   5   6




    Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
    rəhbərliyinə müraciət

    gir | qeydiyyatdan keç
        Ana səhifə


    yükləyin