Arifmetik vektor fazoda berilgan vektorlarning o'zaro chiziqli bog'liqsiz vektorlar Reja


x = (x1, x2, …, xn) vektorning qarama-qarshi vektori deb -x



Yüklə 120,5 Kb.
səhifə2/8
tarix16.09.2023
ölçüsü120,5 Kb.
#144435
1   2   3   4   5   6   7   8
Arifmetik vektor fazoda berilgan vektorlarning o\'zaro chiziqli bog\'liqsiz vektorlar

= (x1, x2, …, xn) vektorning qarama-qarshi vektori deb -x = (-x1, - - x2, …, -xn) vektorga aytiladi. n ta nollardan iborat (0, 0, …, 0) tizimga n o`lchovli nol vektor deyiladi va θ harfi bilan belgilanadi.
Ikki n o`lchovli x = (x1, x2, …, xn) va y = (y1, y2, …, yn) arifmetik vektorlar berilgan bo`lsin.
xi = yi (i = {1,2, … , n}) munosabatlar o`rinli, ya`ni vektorlarning har bir mos koordinatalari o`zaro teng bo`lsa, x va y vektorlarga o`zaro teng vektorlar deyiladi. x va y vektorlarning tengligi x = y ko`rinishda yoziladi.


2. Arifmetik vektorlar ustida chiziqli amallar va ularning xossalari

n o`lchovli arifmetik vektorlar ustida chiziqli amallar quyidagicha bajariladi:



  1. Berilgan x va y vektorlarni qo`shganda ularning mos koordinatalari qo`shiladi: x + y = (x1 + y1; x2 + y2; …; xn + yn).

  2. Berilgan x vektorni k haqiqiy songa ko`paytirganda uning har bir koordinatasi k marta ortadi: kx = (kx1; kx2; …; kxn).

Vektorlar ustida chiziqli amallar quyidagi xossalarga bo`ysinadi:

1) x + y = y + x; 5) (α + β) x = α x + β x;


2) x + (y + z) = (x + y) + z; 6) α (β x) = (α β) x;
3) x + (- y) = x y ; 7) x + θ = x;
4) α (x + y) = α x + α y; 8) x 1 = x ,

bu yerda, x, y va z arifmetik vektorlar, α va β esa haqiqiy sonlar.






  1. Yüklə 120,5 Kb.

    Dostları ilə paylaş:
1   2   3   4   5   6   7   8




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin