Asosiy elementar funksiyalar ularning xossalari funksiyalarning juft-toqligi davriyligi grafigi
Reja:
-
Asosiy elementar funksiyalar
-
Ax+By+C=0 Chiziqli funksiyaning geometrik ma’nosi
-
Darajali funksiya
-
O‘zaro teskari funksiyalar
-
Funksiya grafigini almashtirish
-
Modul bilan bog‘liq ifodalarning grafiklari
1. Asosiy elementar funksiyalar
Quyidagi analitik usulda berilgan funksiyalar asosiy elementar funksiyalar deyiladi.
1. Darajali funksiya: y=хα, aєR;
2. Ko‘rsatkichli funksiya: y = ax, a>0, a≠1;
3. Logarifmik funksiya: y=ℓọgax, x>0, a>0, a≠1;
4. Trigonometrik funksiyalar: y=sinx, y=cosx, y=tgx, y=ctgx, y=secx, y=csecx;
5. Teskari trigonometrik funksiyalar: y=arcsinx, y=arccosx, y=arctgx, y=arcctgx, y=arcsecx, y=arccosecx.
Bu funksiyalar navbati bilan tekshiriladi va grafiklari yasaladi.
«Funksiyadan funksiya» amalini ko‘rib chiqamiz: y o‘zgaruvchi u ning funksiyasi bo‘lsin: y=f(u). u o‘z navbatida boshqa o‘zgaruvchi x ning funksiyasi bo‘lsin: u=φ(x). Demak, y ham, o‘z navbatida u orqali x ga bog‘liq: y=F(φ(x)). Oxirgi funksiya murakkab funksiya yoki «funksiyadan funksiya» deyiladi.
Misol. y=cosu, u=x2 bo‘lsin, u holda y=cos(x2) murakkab funksiya bo‘ladi. y=F(φ(x)) funksiyaning aniqlanish sohasi φ(x) aniqlash sohasining hammasidan yoki uning shunday qismidan iborat bo‘ladiki, bu qismdan u qabul qiladigan qiymatlari uchun F(u) aniqlangan bo‘lsin.
«Funksiyadan funksiya» amali bir necha marta takrorlanishi mumkin.
Misol. y= funksiyani y= , u=sinv, v=x2+1 bo‘g‘in-lar yordamida tasvirlash mumkin, bu yerda «funksiyadan funksiya» amali ikki marta ishlatildi.
Ta’rif. Elementar funksiya deb asosiy elementar funksiyalar va o‘zgarmas miqdorlardan soni chekli bo‘lgan qo‘shish, ayirish, ko‘pay-tirish, bo‘lish va «funksiyadan funksiya» amallari yordamida tuzilgan va bitta formula y=f(x) ko‘rinishida berilishi mumkin bo‘lgan funksiyaga aytiladi. , ,
,
funksiyalar elementar funksiyalardir. Biz asosan elementar funksiyalarni tekshiramiz.
Dostları ilə paylaş: |