4. 5. 6.
Aniqlоvchilarni uchburchak usulida hisоblang:
7. 8. 9.
10. 11. 12.
13. 14. 15.
16. 17. 18.
19. 20. 21.
22. 23. 24.
25. 26.
Tеnglamadan х ni tоping.
27. 28. 29.
Hisоblang.
30. 31.
32. 33.
Tеngsizlikni yеching.
34. 35.
Test.№1
1. 2-chi tartibli determinantlarni hisoblang:
а) b) c)
A) a)7; b)1; c) B)a)-7; b)2; c)
C)a)7; b) c)
2. 3- chi tartibli determinantlarni hisoblang:
а) б)
A) a)4a; b)10. B) a)-2a; b)20. C) a)-4a; b)-10.
3. Uchlari vа nuqtalarda bo’lgan uchburchak yuzini toping.
A) 4 B) 15 C) 6
4. sistemani yeching.A)x=0, y=2B)x=2,y=0 C)x=2, y=-2
5. Ushbu sistemani Kramer qoidasiga asoslanib yeching:
A) x=1,y=-1,z=2 B) x=-1, y=1,z=1 C) x=2,y=-1,z=-2
6. Ushbu sistemani Gauss usulida yeching:
Sistema cheksiz ko`p yechimga ega; B) x=2,y=0,z=-1; C)x=1,y=1,z=-1
7. Hisoblang. ;A) -117 B) 120 C) -110
8. Tengsizlikni yeching.
A)x<1 B) x>-1 C) x<10
2-Amaliy mashg‘ulot. Matritsalar ustida amallar.
2.1-misol.
Kvadrat matritsa
ustun matritsalar va d=2 skalyar kattalik berilgan. Quyidagi amallarni bajarib, natijaviy S matritsani toping S=ATxBx+dxC.
Y echish:
Natija:
2 .2-misol.
ustun va B=[2 4 1] qator matritsalar berilgan.
M1=AxB, M2=BxA matritsalarni hisoblang. Matritsalarni ko‘paytirishga doir M1≠M2 xossasini tekshiring.
Yechish:
Natija: M1 va M2 matritsalarning tartibi turlicha, ya’ni M1≠M2
2.3-misol. matritsaga teskari matritsani toping.
Yechish. Birinchi ustun bo‘yicha yoyib A matritsaninng determinantini xisoblaymiz. detA=1· =1≠0. Demak, A matritsaga teskarisi mavjud.
A matritsaning algebraik yig‘indilarini topamiz.
; ; ;
; ; ;
; ; ;
Natija.
2.4-misol. Quyida keltirilgan elektr sxemasidan matritsalarni keltirib chiqaring.
Boshlang‘ich ma’lumotlar:
; ; ; ; ; .
Shaxobcha qarshiliklari diagonal matritsasini;
Shaxobcha o‘tkazuvchaliklari diagonal matritsasini;
Tugun o‘tkazuvchaliklari matritsasini;
Kontur qarshiliklari matritsasini.
10>1>
Dostları ilə paylaş: |