Bajardi: Tilakov J. Tekshirdi: Xo’jayev L. 2023-2024-yil Mavzu: To‘plamlarda guruhlashlar, ular sonini aniqlash Reja


Takrorlanmaydigan o‘rinlashtirishlar



Yüklə 98,63 Kb.
səhifə2/4
tarix07.01.2024
ölçüsü98,63 Kb.
#202822
1   2   3   4
Diskret tuzulmalari 2-M

Takrorlanmaydigan o‘rinlashtirishlar.
Umumiyroq ma- salani ko‘rib chiqaylik: m elementli X to'plamdan nechta tartib- langan к elementli to'plamlar tuzish mumkin?
Bu masalaning oldingi masaladan farqi shundaki, tartiblash к elementda tugatiladi. Ularning umumiy soni
m(m - l)(m - 2) • ... •(m к + 1)
ko'paytmaga teng. U Л* bilan belgilanadi va m elementdan к tadan takrorlanmaydigan о ‘rinlashtirishlar soni deb ataladi:
Akm = m( m l ). . .( m ~ k + 1) =
Д»' = Pm= m'> 0 ! = 1 deb qabul qilinadi.

Masalan, sinfdagi 20 o'quvchidan tozalik va davomat uchun javob beruvchi 2 o'quvchini necha xil usul bilan tanlash mumkin?


Л2о=т1!oг7! = 20-19 = 380 (usul bilan).
3 . 7 . Takrorlanmaydigan guruhlashlar. «m elementli X to'plam-
ning nechta к elementli qism to'plamlari bor?» — degan masalani hal qilaylik.
Masalan, 4 elementli A = {a; b; c; d} to'plamning nechta 3 elementli qism to'plami borligini ko'raylik. Ular {a; b; c},
{a\ b\ d}, {a\ c; d}, {b; c; d). Demak, 4 ta shunday qism to'plam bor ekan. Bunday qism to'plamlar takrorlanmaydigan guruhlashlar deb ataladi. Bu qism to'plamlarni tartiblaganda 6 barobar ko'proq 3 o'rinli kortejlarga ega bo'lamiz.
Masalan, {a\ b; c} ni tartiblasak: (a; b; c), (a; c; b), {b\ a; c),
{b\ c; a), (c; a; b), (c; b\ a) tartiblangan uchliklarga ega bo'lamiz, tartiblanishlar soni 3! = 6 marta ko'p. Bu bogianishdan foyda- lanib, guruhlashlar sonini topish formulasini keltirib chiqarish mumkin.
m elementli to'plamning к elementli qism to'plamlari soni C* bilan belgilanadi va m elementdan к tadan takrorlanmaydigan guruhlashlar soni deyiladi. (C — fransuzcha combinaison — «bi- rikma» so'zidan olingan.) Takrorlanmaydigan guruhlashlar soni uchun
Ak = C k P => C k = — m‘ * pm ( mk)'. k !

Yüklə 98,63 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin