Bio2305 Vascular Physiology Perfusion = blood flow through tissues or organs Physiology of systemic circulation



Yüklə 57,27 Kb.
tarix28.03.2017
ölçüsü57,27 Kb.
#12782
BIO2305 Vascular Physiology
Perfusion = blood flow through tissues or organs
Physiology of systemic circulation

  • Determined by

  • Dynamics of blood flow

  • Anatomy of circulatory system

  • Regulatory mechanisms that control heart and blood vessels

  • Blood Volume

  • Most in the veins (2/3rd)

  • Smaller volumes in arteries and capillaries


Dynamics of blood circulation involves interrelationships between

  • Pressure

  • Flow

  • Resistance

  • Control mechanisms that regulate blood pressure

  • Blood flow through vessels


Actual volume of blood flowing through a vessel, an organ, or the entire circulation in a given period:

  • Is measured in ml per min.

  • Equivalent to cardiac output (CO), considering the entire vascular system

  • Relatively constant when at rest,

  • Varies widely through individual organs, according to immediate needs


Circulatory Changes During Exercise




Blood Pressure (BP)

  • Measure of force exerted by blood against the wall

  • Force per unit area exerted on the wall of a blood vessel by its contained blood

    • Expressed in millimeters of mercury (mm Hg)

    • Measured in reference to systemic arterial BP in large arteries near the heart

  • Blood moves through vessels because of blood pressure

  • The differences in BP within the vascular system provide the driving force that keeps blood moving from higher to lower pressure areas


Blood Flow & BP

  • Blood flow (F) is directly proportional to the difference in blood pressure (ΔP) between two points in the circulation, flows down a pressure gradient


Blood Flow: Pressure changes

  • Flows down a pressure gradient

  • Force of heart contraction

  • Highest at the heart (driving P), decreases over distance

  • Compliance (distensibility) of vessel

  • Decreases 90% from aorta to vena cava



Blood Flow

  • Flow rate through a vessel (volume of blood passing through per unit of time) is directly proportional to pressure gradient and inversely proportional to resistance.

Flow = ΔP /R


F = flow rate of blood through a vessel

ΔP = pressure gradient

R = resistance of blood vessels



  • Pressure gradient is pressure difference between beginning and end of a vessel

    • Blood flows from area of higher pressure to area of lower pressure

  • Resistance – opposition to flow

    • Measure of the amount of friction blood encounters as it passes through vessels

    • Referred to as peripheral resistance (PR)

  • Blood flow is inversely proportional to resistance (R)

    • If R increases, blood flow decreases

  • R is more important than DP in influencing local blood pressure


Resistance factors

  • Constant resistance factors:

    • Blood viscosity – thickness or “stickiness” of the blood

      • Hematocrit

      • [plasma proteins]

    • Blood vessel length – the longer the vessel, the greater the resistance encountered

  • Major determinant of resistance to flow is vessel’s radius

  • Slight change in radius produces significant change in blood flow

R is proportional to 1

r

Blood Vessel Diameter


  • Changes in vessel diameter significantly alter peripheral resistance

  • Resistance varies inversely with the fourth power of vessel radius (one-half the diameter)




  • R = L h

  • r 4

    • L = length of the vessel)

    • h = viscosity of blood

    • r = radius of the vessel

    • Vessel length and blood viscosity do not vary significantly and are considered CONSTANT = 1




  • Therefore: R = 1

r

  • For example, if the radius is doubled, the resistance is 1/16 as much



Blood Flow, Vessel Diameter and Velocity

  • As diameter of vessels increases, the total cross-sectional area increases and velocity of blood flow decreases


Blood flow & Cross-sectional area

At the capillary bed:



  • vessel diameter decreases

  • but number of vessels increase, increasing total cross-sectional area

  • velocity slows down so that capillaries can unload O2 and nutrients



Vascular Tree

Closed system of vessels consists of:



  • Arteries - carry blood away from heart to tissues

  • Arterioles - smaller branches of arteries

  • Capillaries

      • Smaller branches of arterioles

      • Smallest of vessels across which all exchanges are made with surrounding cells

  • Venules

      • Formed when capillaries rejoin

      • Return blood to heart

  • Veins

      • Formed when venules merge

      • Return blood to heart


Structure of Blood Vessels

  • Artery walls are thicker than that of veins and have narrower lumens

  • Arteries and arterioles have more elastic and collagen Fibers

    • Remain open and can spring back in shape

    • Pressure in the arteries fluctuates due to cardiac systole and diastole

  • Veins have larger lumens Vein walls are thinner than arteries, have larger lumens and have valves

    • Thin walls provide compliance - blood volume reservoir

    • Blood pressure is much lower in veins than in arteries

    • Valves prevent backflow of blood

  • Capillaries have very small diameters (many are only large enough for only one RBC at a time pass through)

    • Composed only of basal lamina and endothelium

    • Thin walls allow for gas, nutrient, waste exchange between blood and tissue cells.



Role of Arteries

Elastic or conducting arteries



  • Largest diameters, high pressure fluctuations

  • Provides pressure reservoir

  • Elastic recoil propels blood after systole

Muscular or medium arteries

  • smooth muscle allows vessels to regulate blood supply by constricting or dilating



Role of Arterioles

  • Transport blood from small arteries to capillaries

  • Controls the amount of resistance

  • Greatest drop in pressure occurs in arterioles which regulate blood flow through tissues

  • No large fluctuations in capillaries and veins


Blood Pressure

  • Force exerted by blood against a vessel wall

    • Depends on

  • Volume of blood forced into the vessel

  • Compliance (distensibility/elasticity) of vessel walls

  • Systolic Pressure

  • Peak pressure exerted by ejected blood against vessel walls during cardiac systole (ventricular contraction)

  • Averages 120 mm Hg

  • Diastolic Pressure

  • Minimum pressure in arteries when blood is draining off into vessels downstream, lowest level of arterial pressure during ventricular cycle

  • Averages 80 mm Hg


Arterial Blood Pressure

  • Blood pressure in elastic arteries near the heart is pulsatile (BP rises and falls)

  • Pulse pressure– the difference between systolic and diastolic pressure

  • Mean arterial pressure (MAP) – average pressure that propels the blood to the tissues

  • MAP = diastolic pressure + 1/3 pulse pressure


Blood Pressure Management

  • Critical closing pressure

      • Pressure at which a blood vessel collapses and blood flow stops

  • Laplace’s Law

    • Force acting on blood vessel wall is proportional to diameter of the vessel times blood pressure



Measurement of BP

  • Blood pressure cuff is inflated above systolic pressure, occluding the artery.

  • As cuff pressure is lowered, the blood will flow only when systolic pressure is above cuff pressure, producing the sounds of Korotkoff.

  • Korotkoff sounds will be heard until cuff pressure equals diastolic pressure, causing the sounds to disappear.



  • Different phases in measurement of blood pressure are identified on the basis of the quality of the Korotkoff sounds.

  • Average arterial BP is 120/80 mm Hg.

  • Average pulmonary BP is 22/8 mm Hg.



Pulse Pressure

  • Difference between systolic and diastolic pressures

  • Increases when stroke volume increases or vascular compliance decreases

  • Pulse pressure can be used to take a pulse to determine heart rate and rhythmicity


Effect of Gravity on BP

  • Effect of Gravity - In a standing position, hydrostatic pressure caused by gravity increases blood pressure below the heart and decreases pressure above the heart


Role of Veins

  • Veins have much lower blood pressure and thinner walls than arteries

  • To return blood to the heart, veins have special adaptations

        • Large-diameter lumens, which offer little resistance to flow

        • Valves (resembling semilunar heart valves), which prevent backflow of blood



Venous BP

  • Venous BP is steady and changes little during the cardiac cycle

  • The pressure gradient in the venous system is only about 20 mm Hg

  • Veins have thinner walls, thus higher compliance.

  • Vascular compliance

    • Tendency for blood vessel volume to increase as blood pressure increases

    • More easily the vessel wall stretches, the greater its compliance

    • Venous system has a large compliance and acts as a blood reservoir

  • Capacitance vessels - 2/3 blood volume is in veins.



Venous Return

  • Venous pressure is driving force for return of blood to the heart.

  • EDV, SV, and CO are controlled by factors which affect venous return


Factors Aiding Venous Return

  • Venous BP alone is too low to promote adequate blood return and is aided by the:

    • Respiratory “pump” – pressure changes created during breathing squeeze local veins

    • Muscular “pump” – contraction of skeletal muscles push blood toward the heart

  • Valves prevent backflow during venous return



Capillary Network

  • Blood flows from arterioles through metarterioles, then through capillary network

  • Venules drain network

  • Smooth muscle in arterioles, metarterioles, precapillary sphincters regulates blood flow



Capillaries

  • Capillary wall consists mostly of endothelial cells

  • Types classified by diameter/permeability

    • Continuous do not have fenestrae

    • Fenestrated have pores


Organization of a Capillary Bed

True capillaries – exchange vessels



      • Oxygen and nutrients cross to cells

      • Carbon dioxide and metabolic waste products cross into blood

Atriovenous anastomosis – vascular shunt, directly connects an arteriole to a venule


Capillary Exchange and Interstitial Fluid Volume Regulation

    • Blood pressure, capillary permeability, and osmosis affect movement of fluid from capillaries

    • A net movement of fluid occurs from blood into tissues –bulk flow.

    • Fluid gained by tissues is removed by lymphatic system.


Exchange of Fluid between Capillaries and Tissues

          • Is in state of dynamic equilibrium.

          • Balance between tissue fluid and blood plasma.

  • Hydrostatic pressure:

          • Exerted against the inner capillary wall.

          • Promotes formation of tissue fluid.

          • Net filtration pressure.

  • Colloid osmotic pressure:

          • Exerted by plasma proteins.

          • Promotes fluid reabsorption into circulatory system.


Fluid Exchange between Capillaries & Tissues – Bulk Flow

  • Starling force = ( Pc + π i) - (Pi + π p)

    • Arterial End

      • Pc = Hydrostatic pressure in the capillary = 33mmHg

      • π i = Colloid osmotic pressure of the interstitial fluid = 20 mmHg

      • Net pressure on arterial side +13mmHg (out of capillary)

    • Venous Side

      • Pi = Hydrostatic pressure in the interstitial fluid = 13 mmHg

      • π p = Colloid osmotic pressure of the blood plasma. = -20 mmHg

      • Net pressure on venous side -7 mmHg (back into capillary)

  • Starling force = 13 mmHg + -7 = 6 mmHg


Lymphatic System

  • Extensive network of one-way vessels

  • Provides accessory route by which fluid can be returned from interstitial to the blood

  • Initial lymphatics

    • Small, blind-ended terminal lymph vessels

    • Permeate almost every tissue of the body

  • Lymph - interstitial fluid that enters a lymphatic vessel

  • Lymph vessels

    • Formed from convergence of terminal lymph vessels (initial lymphatics)

    • Eventually empty into venous system near where blood enters right atrium

    • One way valves spaced at intervals direct flow of lymph toward venous outlet in chest


Lymphatic System Functions

    • Return of excess filtered fluid – 3L/day

    • Defense against disease

      • Lymph nodes have phagocytes which destroy bacteria filtered from interstitial fluid

    • Transport of absorbed fat

    • Return of filtered protein


Regulation of Blood Flow

  • Intrinsic - local autoregulation

    • In most tissues blood flow is proportional to metabolic needs of tissues

  • Extrinsic

    • Nervous System - responsible for routing blood flow and maintaining blood pressure

    • Hormonal Control - sympathetic action potentials stimulate epinephrine and norepinephrine


Intrinsic Regulation of Blood Flow (Autoregulation)

  • Blood flow can increase 7-8 times as a result of vasodilation of metarterioles and precapillary sphincters

    • Response to increased rate of metabolism

    • Intrinsic receptors sense chemical changes in environment

    • Vasodilator substances produced as metabolism increases

      • Decreased 02

      • Increased C02

      • Decreased pH - Lactic acid

      • Increased adenosine/K+ from tissue cells




  • Myogenic control mechanism:

  • Occurs because of the stretch of the vascular smooth muscle - maintains adequate flow.

    • A decrease in systemic arterial pressure causes vessels to dilate.

    • A increase in systemic arterial pressure causes vessels to contract

  • Endothelium secretions:

    • Nitric Oxide - Vasodilation

      • NO diffuses into smooth muscle:

      • Activates cGMP (2nd messenger).

    • Endothelin-1 – vasoconstriction

  • Histamine release

  • Heat/cold application


Summary of Intrinsic Control


Extrinsic Regulation of Blood Flow

  • Sympathoadrenal

    • Increase cardiac output

    • Increase TPR: Alpha-adrenergic stimulation - vasoconstriction of arteries in skin and viscera

  • Parasympathetic

    • Parasympathetic innervation limited, less important than sympathetic nervous system in control of TPR.

    • Parasympathetic endings in arterioles promote vasodilation to the digestive tract, external genitalia, and salivary glands


Blood Pressure Regulation

Pressure of arterial blood is regulated by blood volume, TPR, and cardiac rate.



    • MAP=CO ´ TPR

  • Arteriole resistance is greatest because they have the smallest diameter.

  • Capillary BP is reduced because of the total cross-sectional area.

  • 3 most important variables are HR, SV, and TPR.

    • Increase in each of these will result in an increase in BP.

  • BP can be regulated by:

    • Kidney and sympathoadrenal system


Short-Term Regulation of Blood Pressure

  • Baroreceptor reflexes

  • Chemoreceptor reflexes

    • Sensory receptors sensitive to oxygen, carbon dioxide, and pH levels of blood

  • Central nervous system ischemic response

    • Results from high carbon dioxide or low pH levels in medulla and increases peripheral resistance

Chemoreceptor Reflex Control


Baroreceptor Reflex Control




Baroreceptor Effects



Long-Term Regulation of Blood Pressure

  • Renin-angiotensin-aldosterone mechanism

  • Vasopressin (ADH) mechanism

  • Atrial natriuretic mechanism

  • Fluid shift mechanism

  • Stress-relaxation response


Renin-Angiotensin-Aldosterone Mechanism


Renin-Angiotension-Aldosterone Mechanism



Regulation by ADH (Vasopressin)

  • Released by posterior pituitary when osmoreceptors in hypothalamus detect an increase in plasma osmolality.

  • Dehydration or excess salt intake:

    • Produces sensation of thirst.

    • Stimulates H20 reabsorption from urine in kidneys, elevating blood volume


Vasopressin (ADH) Mechanism


Atrial Natriuretic Peptide (ANP)

  • Produced by the atria of the heart.

  • Stretch of atria stimulates production of ANP.

    • Antagonistic to aldosterone and angiotensin II.

    • Promotes Na+ and H20 excretion in the urine by the kidney.

    • Promotes vasodilation.


Cerebral Circulation

Cerebral blood flow is not normally influenced by sympathetic nerve activity.

Normal range of arterial pressures:

Cerebral blood flow regulated almost exclusively by intrinsic mechanisms:



      • Myogenic:

        • Dilate in response to decreased pressure.

        • Cerebral arteries also sensitive to [C02].

          • Dilate due to decreased pH of cerebrospinal fluid.

  • Metabolic:

        • Sensitive to changes in metabolic activity.

          • Areas of brain with high metabolic activity receive most blood.

          • May be caused by [K+].







Yüklə 57,27 Kb.

Dostları ilə paylaş:




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2025
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin