Building Econometric Models


Extensions to the Basic GARCH Model



Yüklə 0,79 Mb.
səhifə11/23
tarix01.05.2023
ölçüsü0,79 Mb.
#105443
1   ...   7   8   9   10   11   12   13   14   ...   23
Ch9 slides

Extensions to the Basic GARCH Model

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • Since the GARCH model was developed, a huge number of extensions and variants have been proposed. Three of the most important examples are EGARCH, GJR, and GARCH-M models.
  •  
  • Problems with GARCH(p,q) Models:
  • - Non-negativity constraints may still be violated
  • - GARCH models cannot account for leverage effects
  •  
  • Possible solutions: the exponential GARCH (EGARCH) model or the GJR model, which are asymmetric GARCH models.
  •  

The EGARCH Model

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • Suggested by Nelson (1991). The variance equation is given by
  •  
  • Advantages of the model
  • - Since we model the log(t2), then even if the parameters are negative, t2
  • will be positive.
  • - We can account for the leverage effect: if the relationship between
  • volatility and returns is negative, , will be negative.

The GJR Model

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • Due to Glosten, Jaganathan and Runkle
  •  
  • where It-1 = 1 if ut-1 < 0
  • = 0 otherwise
  •  
  • For a leverage effect, we would see > 0.
  •  
  • We require 1 +  0 and 1  0 for non-negativity.

An Example of the use of a GJR Model

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • Using monthly S&P 500 returns, December 1979- June 1998
  •  
  • Estimating a GJR model, we obtain the following results.
  •  
  •  
  •  

Yüklə 0,79 Mb.

Dostları ilə paylaş:
1   ...   7   8   9   10   11   12   13   14   ...   23




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin