Building Econometric Models


Parameter Estimation using Maximum Likelihood (cont’d)



Yüklə 0,79 Mb.
səhifə10/23
tarix01.05.2023
ölçüsü0,79 Mb.
#105443
1   ...   6   7   8   9   10   11   12   13   ...   23
Ch9 slides

Parameter Estimation using Maximum Likelihood (cont’d)

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • From (7),
  • (10)
  •  
  • From (8),

Parameter Estimation using Maximum Likelihood (cont’d)

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • Rearranging,
  • (11)
  • How do these formulae compare with the OLS estimators?
  • (9) & (10) are identical to OLS
  • (11) is different. The OLS estimator was
  •  
  • Therefore the ML estimator of the variance of the disturbances is biased, although it is consistent.
  •  But how does this help us in estimating heteroscedastic models?

Estimation of GARCH Models Using Maximum Likelihood

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • Now we have yt = + yt-1 + ut , ut  N(0, )
  •  
  • Unfortunately, the LLF for a model with time-varying variances cannot be maximised analytically, except in the simplest of cases. So a numerical procedure is used to maximise the log-likelihood function. A potential problem: local optima or multimodalities in the likelihood surface.
  • The way we do the optimisation is:
  • 1. Set up LLF.
  • 2. Use regression to get initial guesses for the mean parameters.
  • 3. Choose some initial guesses for the conditional variance parameters.
  • 4. Specify a convergence criterion - either by criterion or by value.

Non-Normality and Maximum Likelihood

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • Recall that the conditional normality assumption for ut is essential.
  •  
  • We can test for normality using the following representation
  • ut = vtt vt  N(0,1)
  •  
  •  
  • The sample counterpart is
  •  
  • Are the normal? Typically are still leptokurtic, although less so than the . Is this a problem? Not really, as we can use the ML with a robust variance/covariance estimator. ML with robust standard errors is called Quasi- Maximum Likelihood or QML.

Yüklə 0,79 Mb.

Dostları ilə paylaş:
1   ...   6   7   8   9   10   11   12   13   ...   23




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin