Building Econometric Models


The Dynamic Conditional Correlation Model



Yüklə 0,79 Mb.
səhifə22/23
tarix01.05.2023
ölçüsü0,79 Mb.
#105443
1   ...   15   16   17   18   19   20   21   22   23
Ch9 slides

The Dynamic Conditional Correlation Model

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • Several different formulations of the dynamic conditional correlation (DCC) model are available, but a popular specification is due to Engle (2002)
  • The model is related to the CCC formulation but where the correlations are allowed to vary over time.
  • Define the variance-covariance matrix, Ht, as Ht = DtRtDt
  • Dt is a diagonal matrix containing the conditional standard deviations (i.e. the square roots of the conditional variances from univariate GARCH model estimations on each of the N individual series) on the leading diagonal
  • Rt is the conditional correlation matrix
  • Numerous parameterisations of Rt are possible, including an exponential smoothing approach

The DCC Model – A Possible Specification

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • A possible specification is of the MGARCH form:
  • where:
  • S is the unconditional correlation matrix of the vector of standardised residuals (from the first stage estimation), ut = Dt−1ϵt
  • ι is a vector of ones
  • Qt is an N × N symmetric positive definite variance-covariance matrix
  • ◦ denotes the Hadamard or element-by-element matrix multiplication procedure
  • This specification for the intercept term simplifies estimation and reduces the number of parameters.

The DCC Model – A Possible Specification

  • ‘Introductory Econometrics for Finance’ © Chris Brooks 2013
  • Engle (2002) proposes a GARCH-esque formulation for dynamically modelling Qt with the conditional correlation matrix, Rt then constructed as
  • where diag(·) denotes a matrix comprising the main diagonal elements of (·) and Q∗ is a matrix that takes the square roots of each element in Q
  • This operation is effectively taking the covariances in Qt and dividing them by the product of the appropriate standard deviations in Qt∗ to create a matrix of correlations.

Yüklə 0,79 Mb.

Dostları ilə paylaş:
1   ...   15   16   17   18   19   20   21   22   23




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin