Çoxluqlar



Yüklə 24,66 Kb.
səhifə3/4
tarix02.01.2022
ölçüsü24,66 Kb.
#37082
1   2   3   4
sərbəst iş 1

Tarixi


"Kompleks ədədlər" terminini ilk dəfə fransız alimi Lazar Karno işlətmişdir. Kompleks ədədlərinin həndəsi izahını isə Norveç əsilli Danimarka alimi Vessel Kaspor vermişdir. Xəyali ədədin simvolu ("i") 1777-ci ildə isveçrə alimi Leonard Eyler tərəfindən işlədilmişdi. Sözün kökü olan "imaginarius" ifadəsi latınca "xəyali" deməkdir.

Xarakteristika


Kvadrat tənliklərində diskriminant sıfırdan kiçikdirsə, onda bu tənliyin həqiqi ədədlər çoxluğunda kökü yoxdur. Məs. x2+9=0 tənliyinin həqiqi ədədlər çoxluğunda kökü yoxdur. Buradan alınır ki, həqiqi ədədlər çoxluğunu elə genişləndirmək lazımdır ki, yeni tənliyin kökü olsun, vurma və toplama əməllərinin xassələri saxlanılsın. Bu məqsədlə "İ" ədədi (xəyali vahid) daxil edilir. "i" ədədi daxil edildikdən sonra çoxluğu elə genişləndirmək lazımdır ki, bütün həqiqi ədədlər və "i" ədədi bu çoxluğa daxil olsun. a və b ədədləri isə həqiqi ədədlər olduğundan bi hasili daxil edək. Buradan alınır: a + bi.

z = a+bi şəklində olan ifadə və ya i2 = -1 şərtini ödəyən i ədədinə Kompleks ədəd deyilir. Burada a-ya z-in həqiqi hissəsi deyilir və Re(z) = a düsturu şəklində, b-yə isə z-in xəyali hissəsi deylir və Im(z)= b düsturu şəklində yazılır. Buradan alınır ki, həqiqi ədədlər kompleks ədədlərinin içərisindədir. Aşağıda kompleks ədələrinin növləri göstərilmişdir:



  • Cəbri şəkildə verilmiş kompleks ədədlər: z = a+bi şəklində olan kompleks ədədə deyilir.

  • Tərs kompleks ədədlər: hasili 1-ə bərabər olan kompleks ədədə deyilir: zw=1.

  • Kompleks ədədlərin bərabərliyi:əgər iki kompleks ədəd bərabərdirsə, onların xəyali və həqiqi hissələri də bir-brinə bərabərdir: z=w , a=b.

  • Sırf xəyali ədəd: 0 + bi şəklində olan ifadəyə deyilir. 0 ədədi yeganə kompleks ədəddir ki, həm sırf xəyali , həm də həqiqi ədəddir.

Yüklə 24,66 Kb.

Dostları ilə paylaş:
1   2   3   4




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin