41
In the experimental setup two scintillators are placed: J-PET and BC-420 with
identical dimensions: 14 mm × 14 mm × 20 mm. Scintillator are wrapped in Vikuiti
specular reflective foil [74] to prevent the loose of light. Each scintillator
was connected by
EJ-550 optical gel [13] to the window of R9800 Hamamatsu photomultiplier tube [21] at
both ends. Electric signals coming from photomultipliers were sampled by the oscilloscope
with 100 ps interval.
Light output of J-PET scintillators was determined with respect to known light
output of BC-420 scintillator. That is why BC-420 was used as reference scintillator in the
above experimental setup.
Plastic scintillator consist of low atomic number (Z) elements,
mainly carbon and
hydrogen. Gamma quanta interact with electrons of low Z elements predominantly via
Compton effect [75]. Therefore the charge distribution is continuous. Photoelectric
maximum, typical for crystal scintillator is not observed.
The charge of registered signals is proportional to
the number of scintillation
photons which in turn is proportional to the energy transferred by gamma quantum to an
electron of scintillator. In our experiment, the energy of gamma quanta is fixed and equal
to 511 keV, the maximum of possible energy transfer is also well defined and equal to 341
keV. Determination of the J-PET scintillators light output is possible by comparison of
charge of signals for both: commercial and manufactured scintillators. Preliminary studies
of the light output of the J-PET scintillator light output are subject of the article [76], and
the detailed results described below are submitted for publication [77].
Measurements were carried out for a series of eight scintillators with different
concentration of 2-(4-styrylphenyl)benzoxazole, varying from 0 to 0.5 wt. ‰. In order to
minimize the influence of instrumental uncertainties coming from e.g. photomultipliers
miscalibration, tests were performed twice for each sample, exchanging position of J-PET
and BC-420 scintillator in the experimental setup. Thus, charge
spectra registered by the
same pair of photomultipliers can be compared.
Charge spectra registered for the series of J-PET scintillators containing different
amounts of wavelength shifter, and BC-420 by two pairs of photomultipliers: PM1, PM2
and PM3, PM4 are presented in Fig. 18. Left panel shows spectra obtained with PM1 and
PM2 photomultipliers and right panel presents spectra measured with PM3 and PM4.
Spectra are arranged in order of ascending concentration of wavelength shifter.
42
Dependence of light output on the concentration of wavelength shifter in plastic scintillator
was determined in order to set the optimal concentration of 2-(4-styrylphenyl)benzoxazole,
which enables the most effective scintillator performance.
Comparison of the charge spectra registered by
each photomultiplier were
conducted using two methods. In the first one [10], scaling factor (LR) is calculated, by
which the charge of J-PET scintillator needs to be divided to obtain spectra of J-PET and
BC-420 fitting together. The scaling factor is equal to the ratio of particular scintillators
light output:
(2).
Scaling factor was calculated for each photomultiplier. Values of light output given
in the second column of Tab. 8 are averaged results obtained for four photomultipliers.
In the second method LR was calculated as a ratio of the
middles of Compton edges
which are the right edges of spectra. The ratio is interpreted as the relative light output.
Knowing the light output of BC-420, light output of J-PET scintillators was calculated.
The middle of the Compton edge of each spectrum was determined by fitting the
Novosybirsk function to the edge of charge spectrum [78]. Values of J-PET scintillators
light output determined using this method are given in the third column of Tab. 8.
Differences in the beginning of the spectra, around 0
pC are caused by fact that
PM1 and PM3 were used in conditional trigger mode. Signals were registered by PM3 if
a signal has been registered by PM1 within defined time window. Differences at the end of
spectra, which is the Compton edge, are due to different light output of scintillators.