2 Aniqmasliklarni ochish. Lopital qoidalari Tegishli funksiyalarning hosilalari mavjud bo‘lganda , , 0, -, 1, 00, 0 ko‘rinishdagi aniqmasliklarni ochish masalasi engillashadi. Odatda hosilalardan foydalanib, aniqmasliklarni ochish Lopital qoidalari deb ataladi. Biz quyida Lopital qoidalarining bayoni bilan shug‘ullanamiz.
1. ko‘rinishdagi aniqmaslik.Ma’lumki, x0 da f(x)0 va g(x)0 bo‘lsa, nisbat ko‘rinishdagi aniqmaslikni ifodalaydi. Ko‘pincha xa da nisbatning limitini topishga qaraganda nisbatning limitini topish oson bo‘ladi. Bu nisbatlar limitlarining teng bo‘lish sharti quyidagi teoremada ifodalangan.
n da esa
.
2-teorema. Agar [c;+) nurda aniqlangan f(x) va g(x) funksiyalar berilgan bo‘lib,
1) (c;+) da chekli f’(x) va g‘(x) hosilalar mavjud va g‘(x)0,
2) ;
3) hosilalar nisbatining limiti ( chekli yoki cheksiz) mavjud bo‘lsa, u holda funksiyalar nisbatining limiti mavjud va
= (2.3)
tenglik o‘rinli bo‘ladi.