- t e o r e m a . Soddalashtirish algoritmini qo‘llash natijasida hosil qilingan diz’yunktiv normal shakl (I va II almashtirishlarga nisbatan) minimal DNSh bo‘ladi.
- m i s o l . Chinlik jadvali vositasida berilgan (2.1-jadval) funksiyani ko‘rib o‘taylik.
f ( x1 , x2 , x3 )
2.1-jadval
|
x1
|
x2
|
x3
|
f (x1 , x2 , x3 )
|
x1
|
x2
|
x3
|
f (x1 , x2 , x3 )
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
f ( x1, x2 , x3 ) funksiya uchun dastlabki DNSh sifatida MDNShni olamiz va ikki
tartiblashni o‘tkazamiz:
D' x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1x2 x3 ,
D'' x1 x2 x3 x3 x1 x2 x2 x1 x3 x1x2 x3 x3 x1 x2 x1 x2 x3 .
Tartibga solingan D' DNSh uchun algoritmning ishlashini ko‘ramiz.
x1 x2 x3 kon’yunksiyani chetlashtirish mumkin emas, ammo x1
ko‘paytuvchini chetlashtirish mumkin, chunki
x2 x3 x1 x2 x3 x1 x2 x3 . Natijada
x2 x3
kon’yunksiyaga ega bo‘lamiz, undan birorta ham ko‘paytuvchini chetlashtirish mumkin emas.
x1 x2 x3 kon’yunksiyani ham chetlashtirish mumkin emas. Bu
kon’yunksiyadan x1
ko‘paytuvchini chetlashtirish mumkin emasligini osongina
ko‘rish mumkin, lekin
x2 ko‘paytuvchiga nisbatan
x2 ko‘paytuvchini
chetlashtirish operatsiyasini qo‘llash mumkin.
x1 x3
kon’yunksiyani hosil qilamiz.
Ko‘paytuvchini chetlashtirish operatsiyasini ishlatib soddalashtirish mumkin emas.
x1 x2 x3
.
kon’yunksiyani chetlashtirish mumkin, chunki
x1 x3 x1 x2 x3 x1 x2 x3
x1 x2 x3 kon’yunksiyani ham chetlashtirish mumkin, chunki
x2 x3 x1 x2 x3 x1 x2 x3 .
x1 x2 x3 kon’yunksiyani chetlashtirish mumkin emas, biroq x2
ko‘paytuvchini tashlab yuborish mumkin. Natijada
x1 x3
kon’yunksiyaga ega
bo‘lamiz. Bu kon’yunksiyaga nisbatan ko‘paytuvchini chetlashtirish operatsiyasini ishlatib, uni soddalashtirish mumkin emas.
x1 x2 x3 kon’yunksiyani ham chetlashtirish mumkin emas, ammo undan x1
ko‘paytuvchini chetlashtirish mumkin. Natijada, va uni boshqa soddalashtirish mumkin emas.
x2 x3
kon’yunksiyani hosil qilamiz
Shunday qilib,
x2 x3 x1 x3 x1 x3 x2 x3
DNShni hosil qilamiz. Bu DNShga
nisbatan kon’yunksiyani chetlashtirish operatsiyasini ishlatish natija bermaydi.
Demak, soddalashtirish algoritmini ishlatish natijasida
D1 x2 x3 x1 x3 x1 x3 x2 x3
(2)
DNShni hosil qilamiz. Yuqorida keltirilgan hisoblashlar 2.2-jadvalda aks ettirilgan.
Agar soddalashtirish algoritmini
D'' ga nisbatan ishlatsak, u holda
D2 x2 x3 x1 x3 x1 x2
(3)
diz’yunktiv normal shaklga ega bo‘lamiz.
2.3-jadvalda D'' ga nisbatan ishlatilgan soddalashtirish algoritmi ishining
asosiy bosqichlari keltirilgan. ■
2.2-misoldan ko‘rinib turibdiki, soddalashtirish algoritmi tatbiqining natijasi dastlabki DNShni qanday tartiblashga bog‘liq bo‘lar ekan.
2.2-jadval
|
Qadam tartib
raqami
|
DNSh va ko‘rilayotgan
tartib
|
Tekshiri- layotgan
kon’yunksiya
|
Operatsiya turi
|
1
|
x1 x2 x3 x1 x2 x3
x1 x2 x3 x1 x2 x3
x1 x2 x3 x1 x2 x3
|
x1 x2 x3
|
x1 ni chetlashtirish
|
2
|
x2 x3 x1 x2 x3
x1 x2 x3 x1 x2 x3
x1 x2 x3 x1 x2 x3
|
x1 x2 x3
|
x2 ni chetlashtirish
|
3
|
x2 x3 x1 x3
x1 x2 x3 x1 x2 x3
x1 x2 x3 x1 x2 x3
|
x1 x2 x3
|
x1 x2 x3 ni chetlashtirish
|
4
|
x2 x3 x1 x3 x1 x2 x3
x1 x2 x3 x1 x2 x3
|
x1 x2 x3
|
x1 x2 x3 ni chetlashtirish
|
5
|
x2 x3 x1 x3
x1 x2 x3 x1 x2 x3
|
x1 x2 x3
|
x2 ni chetlashtirish
|
6
|
x2 x3 x1 x3
x1 x3 x1 x2 x3
|
x1 x2 x3
|
x1 ni chetlashtirish
|
7
|
x2 x3 x1 x3
x1 x3 x2 x3
|
|
|
|
Ikkinchi ko‘rish yangi
natija bermaydi
|
Algoritmning
ishi tugadi
|
|
Masalan,
Lh (D1 ) 8 ,
Lh (D2 ) 6 ,
Lk (D1 ) 4 ,
Lk (D2 ) 3 ,
Li (D1 ) 4 ,
Li (D2 ) 3 va
2.3-jadval
|
Qadam
tartib raqami
|
DNSh va
ko‘rilayotgan tartib
|
Tekshiri-
layotgan kon’yunksiya
|
Operatsiya turi
|
1
|
x1 x2 x3 x3 x1 x2
x2 x1 x3 x1 x2 x3
x3 x1 x2 x1 x2 x3
|
x1 x2 x3
|
x1 ni chetlashtirish
|
2
|
x2 x3 x3 x1 x2
x2 x1 x3 x1 x2 x3
x3 x1 x2 x1 x2 x3
|
x3 x1 x2
|
x3 ni chetlashtirish
|
3
|
x2 x3 x1 x2
x2 x1 x3 x1 x2 x3
x3 x1 x2 x1 x2 x3
|
x2 x1 x3
|
x2 ni chetlashtirish
|
4
|
x2 x3 x1 x2
|
|
|
bu yerdan chiqadi.
Lh ( D1 ) Lh ( D2 ) ,
Lk ( D1 ) Lk ( D2 ) ,
Li ( D1 ) Li ( D2 )
munosabatlar kelib
|
x1 x3 x1 x2 x3
x3 x1 x2 x1 x2 x3
|
x1 x2 x3
|
x1 ni chetlashtirish
|
5
|
x2 x3 x1 x2
x1 x3 x2 x3
x3 x1 x2 x1 x2 x3
|
x3 x1 x2
|
x3 ni chetlashtirish
|
6
|
x2 x3 x1 x2
x1 x3 x2 x3
x1 x2 x1 x2 x3
|
x1 x2 x3
|
x1 x2 x3 ni chetlashtirish
|
7
|
x2 x3 x1 x2
x1 x3 x2 x3 x1 x2
|
x2 x3
|
qo‘llanilmaydi
|
8
|
x2 x3 x1 x2
x1 x3 x2 x3 x1 x2
|
x1 x2
|
x1 x2 ni chetlashtirish
|
9
|
x2 x3 x1 x3
x2 x3 x1 x2
|
x1 x3
|
qo‘llanilmaydi
|
10
|
x2 x3 x1 x3
x2 x3 x1 x2
|
x2 x3
|
x2 x3 ni chetlashtirish
|
11
|
x2 x3 x1 x3 x1x2
|
x1 x2
|
qo‘llanilmaydi
|
12
|
x2 x3 x1 x3 x1 x2
|
Algoritmning
ishi tugadi
|
|
“Istalgan
f (x1, x2 ,..., xn )
funksiya uchun biror tartiblash oqibatida
soddalashtirish algoritmini tatbiq etib minimal DNShni hosil etish mumkinmi yoki yo‘qmi?” degan savol tug‘iladi. Bu savolga quyidagi teorema javob beradi.
|