Diz’yunktiv normal shaklni soddalashtirish va tupikli dnsh



Yüklə 0,56 Mb.
səhifə4/8
tarix02.06.2023
ölçüsü0,56 Mb.
#123041
1   2   3   4   5   6   7   8
Minimallashtirish masalasining geometrik tarzda quyilishi. ruxsat etilgan konyuksiyalar. Qisqartirilgan DNSH va uning yasash algoritmi

- t e o r e m a . Soddalashtirish algoritmini qo‘llash natijasida hosil qilingan diz’yunktiv normal shakl (I va II almashtirishlarga nisbatan) minimal DNSh bo‘ladi.

    1. - m i s o l . Chinlik jadvali vositasida berilgan (2.1-jadval) funksiyani ko‘rib o‘taylik.

f (x1 , x2 , x3 )

2.1-jadval

x1

x2

x3

f (x1 , x2 , x3 )

x1

x2

x3

f (x1 , x2 , x3 )

0

0

0

1

1

0

0

1

0

0

1

1

1

0

1

0

0

1

0

0

1

1

0

1

0

1

1

1

1

1

1

1



f (x1, x2 , x3 ) funksiya uchun dastlabki DNSh sifatida MDNShni olamiz va ikki
tartiblashni o‘tkazamiz:
D'  x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1 x2 x3 x1x2 x3 ,
D''  x1 x2 x3 x3 x1 x2 x2 x1 x3 x1x2 x3 x3 x1 x2 x1 x2 x3 .
Tartibga solingan D' DNSh uchun algoritmning ishlashini ko‘ramiz.

  1. x1 x2 x3 kon’yunksiyani chetlashtirish mumkin emas, ammo x1




ko‘paytuvchini chetlashtirish mumkin, chunki
x2 x3 x1 x2 x3 x1 x2 x3 . Natijada



x2 x3

kon’yunksiyaga ega bo‘lamiz, undan birorta ham ko‘paytuvchini chetlashtirish mumkin emas.

  1. x1 x2 x3 kon’yunksiyani ham chetlashtirish mumkin emas. Bu

kon’yunksiyadan x1
ko‘paytuvchini chetlashtirish mumkin emasligini osongina

ko‘rish mumkin, lekin
x2 ko‘paytuvchiga nisbatan
x2 ko‘paytuvchini

chetlashtirish operatsiyasini qo‘llash mumkin.

x1 x3
kon’yunksiyani hosil qilamiz.

Ko‘paytuvchini chetlashtirish operatsiyasini ishlatib soddalashtirish mumkin emas.

  1. x1 x2 x3

.
kon’yunksiyani chetlashtirish mumkin, chunki



x1 x3 x1 x2 x3 x1 x2 x3

  1. x1 x2 x3 kon’yunksiyani ham chetlashtirish mumkin, chunki

x2 x3 x1 x2 x3 x1 x2 x3 .

  1. x1 x2 x3 kon’yunksiyani chetlashtirish mumkin emas, biroq x2

ko‘paytuvchini tashlab yuborish mumkin. Natijada


x1 x3
kon’yunksiyaga ega

bo‘lamiz. Bu kon’yunksiyaga nisbatan ko‘paytuvchini chetlashtirish operatsiyasini ishlatib, uni soddalashtirish mumkin emas.

  1. x1 x2 x3 kon’yunksiyani ham chetlashtirish mumkin emas, ammo undan x1

ko‘paytuvchini chetlashtirish mumkin. Natijada, va uni boshqa soddalashtirish mumkin emas.
x2 x3
kon’yunksiyani hosil qilamiz

Shunday qilib,
x2 x3 x1 x3 x1 x3 x2 x3
DNShni hosil qilamiz. Bu DNShga

nisbatan kon’yunksiyani chetlashtirish operatsiyasini ishlatish natija bermaydi.
Demak, soddalashtirish algoritmini ishlatish natijasida



D1 x2 x3 x1 x3 x1 x3 x2 x3
(2)

DNShni hosil qilamiz. Yuqorida keltirilgan hisoblashlar 2.2-jadvalda aks ettirilgan.

Agar soddalashtirish algoritmini
D'' ga nisbatan ishlatsak, u holda



D2 x2 x3 x1 x3 x1 x2

(3)


diz’yunktiv normal shaklga ega bo‘lamiz.
2.3-jadvalda D'' ga nisbatan ishlatilgan soddalashtirish algoritmi ishining
asosiy bosqichlari keltirilgan. ■
2.2-misoldan ko‘rinib turibdiki, soddalashtirish algoritmi tatbiqining natijasi dastlabki DNShni qanday tartiblashga bog‘liq bo‘lar ekan.

2.2-jadval

Qadam tartib
raqami

DNSh va ko‘rilayotgan
tartib

Tekshiri- layotgan
kon’yunksiya

Operatsiya turi

1




x1 x2 x3 x1 x2 x3

x1 x2 x3 x1 x2 x3
x1 x2 x3 x1 x2 x3




x1 x2 x3



x1 ni chetlashtirish

2




x2 x3 x1 x2 x3

x1 x2 x3 x1 x2 x3
x1 x2 x3 x1 x2 x3




x1 x2 x3



x2 ni chetlashtirish

3




x2 x3 x1 x3

x1 x2 x3 x1 x2 x3
x1 x2 x3 x1 x2 x3




x1 x2 x3



x1 x2 x3 ni chetlashtirish

4




x2 x3 x1 x3 x1 x2 x3
x1 x2 x3 x1 x2 x3



x1 x2 x3

x1 x2 x3 ni chetlashtirish

5




x2 x3 x1 x3
x1 x2 x3 x1 x2 x3

x1 x2 x3

x2 ni chetlashtirish

6




x2 x3 x1 x3
x1 x3 x1 x2 x3



x1 x2 x3

x1 ni chetlashtirish

7



x2 x3 x1 x3
x1 x3 x2 x3










Ikkinchi ko‘rish yangi
natija bermaydi

Algoritmning
ishi tugadi







Masalan,
Lh (D1 )  8 ,
Lh (D2 )  6 ,
Lk (D1 )  4 ,
Lk (D2 )  3 ,
Li (D1 )  4 ,
Li (D2 )  3 va


2.3-jadval

Qadam
tartib raqami

DNSh va
ko‘rilayotgan tartib

Tekshiri-
layotgan kon’yunksiya

Operatsiya turi

1

x1 x2 x3 x3 x1 x2
x2 x1 x3 x1 x2 x3
x3 x1 x2 x1 x2 x3




x1 x2 x3



x1 ni chetlashtirish

2

x2 x3 x3 x1 x2
x2 x1 x3 x1 x2 x3
x3 x1 x2 x1 x2 x3




x3 x1 x2



x3 ni chetlashtirish

3

x2 x3 x1 x2
x2 x1 x3 x1 x2 x3
x3 x1 x2 x1 x2 x3




x2 x1 x3



x2 ni chetlashtirish

4

x2 x3 x1 x2









bu yerdan chiqadi.
Lh (D1 )  Lh (D2 ) ,
Lk (D1 )  Lk (D2 ) ,
Li (D1 )  Li (D2 )
munosabatlar kelib











x1 x3 x1 x2 x3

x3 x1 x2 x1 x2 x3



x1 x2 x3

x1 ni chetlashtirish

5




x2 x3 x1 x2
x1 x3 x2 x3

x3 x1 x2 x1 x2 x3




x3 x1 x2



x3 ni chetlashtirish

6




x2 x3 x1 x2
x1 x3 x2 x3

x1 x2 x1 x2 x3




x1 x2 x3



x1 x2 x3 ni chetlashtirish

7




x2 x3 x1 x2
x1 x3 x2 x3 x1 x2


x2 x3

qo‘llanilmaydi



8




x2 x3 x1 x2
x1 x3 x2 x3 x1 x2


x1 x2

x1 x2 ni chetlashtirish

9




x2 x3 x1 x3
x2 x3 x1 x2

x1 x3

qo‘llanilmaydi



10




x2 x3 x1 x3
x2 x3 x1 x2



x2 x3

x2 x3 ni chetlashtirish

11




x2 x3 x1 x3 x1x2

x1 x2

qo‘llanilmaydi

12




x2 x3 x1 x3 x1 x2

Algoritmning
ishi tugadi







“Istalgan
f (x1, x2 ,..., xn )
funksiya uchun biror tartiblash oqibatida

soddalashtirish algoritmini tatbiq etib minimal DNShni hosil etish mumkinmi yoki yo‘qmi?” degan savol tug‘iladi. Bu savolga quyidagi teorema javob beradi.

    1. Yüklə 0,56 Mb.

      Dostları ilə paylaş:
1   2   3   4   5   6   7   8




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin