Ehtimollar nazariyasining aksiomalari. Ehtimollarni hisoblashning klassik usuli
A.N.Kolmogorov aksiomalari va ulardan kelib chiqadigan teoremalar
1-aksioma. Har bir A hodisaga uning ehtimoli deb ataluvchi manfiy bo‘lmagan P(A) son mos keltirilgan.
2-aksioma. Agar A1, A2, . . . juft-jufti bilan birgalikda bo‘lmagan hodisalar bo‘lsa, u holda
P(A1+A2+...)=P(A1)+P(A2)+... (1)
Eslatma. Ai hodisalar soni cheksiz bo‘lsa, o‘ng tomonda qatorning yig‘indisi qaraladi, chekli bo‘lganda esa, unga nisbatan kuchsizroq shart qaraladi.
3`-aksioma. Agar A va B birgalikda bo‘lmagan hodisalar bo‘lsa, u holda
P(A+B)= P(A)+P(B) (2)
(2) ni oddiy qo‘shish aksiomasi, (1) yesa kengaytirilgan qo‘shish aksiomasi deyiladi.
4-aksioma. P()=1
1-3 aksiomalar A.N.Kolmogorov tomonidan kiritilgan bo‘lib, ular ehtimollar nazariyasining asosini tashkil qiladi.
1-teorema. P(A)+P(A)=1 bo‘ladi.
Isbot. Ma’lumki, A+A=. Bundan 1=P()=P(A+A)=P(A)+P(A).
2-teorema. P(A)1.
Isbot. P(A)0 bo‘lgani uchun P(A)+P(A)=1 dan P(A)1 kelib chiqadi.
3-teorema. P(A+B)=P(A)+P(B)-P(AB) tenglik o‘rinli.
Isbot. A va B lar ning qism to‘plamlari bo‘lganligidan
A=AB+AB, A+B=B+AB tengliklar o‘rinli ekanligi Eyler doiralari yordamida tushuntirilishi ravshan
Har ikkala tenglikka qo‘shish aksiomasini tadbiq etamiz:
P(A)=P(AB)+P(AB),P(A+B)=P(B)+P(AB)
Ikkinchi tenglikdan birinchi tenglikni ayirsak isbot talab etilgan tenglik kelib chiqadi.
A.N.Kolmogorov aksiomalari tasodifiy natijali tajribalarni tavsiflash uchun qulay matematik sxemani beradi. U quyidagidan iborat.
Elementar hodisalar fazosi deb ataluvchi to‘plam.
to‘plamning hodisalar deb ataluvchi va I, II, III shartni qanoatlantiruvchi qism to‘plamlari sistemasi.
Bu uchta obektlar majmuasi muayyan tajribaning ehtimoliy modeli deb ataladi. Bunga ko‘ra ehtimollar nazariyasi predmetini aniq ta’riflash imkoniyatiga ega bo‘lamiz: Ehtimollar nazariyasi mumkin bo‘lgan barcha ehtimoliy modellarni o‘rganadi.