Fizika-matematika fakulteti


Hech qaysi bir geometriya boshqasiga qaraganda haqiqatga yaqinroq bo`lishi mumkin emas



Yüklə 279 Kb.
səhifə9/12
tarix22.06.2020
ölçüsü279 Kb.
#32139
1   ...   4   5   6   7   8   9   10   11   12
Lobachevskiy geometriyasi

Hech qaysi bir geometriya boshqasiga qaraganda haqiqatga yaqinroq bo`lishi mumkin emas”, - degan edi.

Aksiomalarni tekshirish

  1. Istalgan siljitish “tekislik” ni o`z-o`ziga o`tkazadi, shu bilan birga to`g`ri chiziqni to`g`ri chiziqqa o`tkazadi.

  2. Istalgan ikki “nuqta”dan bitta va faqat bitta to`g`ri chiziq o`tadi.

  3. “tekislikni siljitish”da “to`g`ri chiziqlar” orasidagi burchak kattaligi saqlanadi.

  4. Istalgan ikki “to`g`ri chiziq” kongurent, ya`ni ulardan birini ikkinchiga o`tkazuvchi “tekislikni siljitish” mavjud.

  5. “to`g`ri chiziq”qa tegishli bo`lmagan istalgan “nuqta”dan “to`g`ri chiziq” bian umumiy nuqtaga ega bo`lmagan kamida ikkita “to`g`ri chiziq” o`tkazish mumkin.

Bu aksiomalarni isbotlarini qarab chiqaylik.

I. doirani o`z markazi atrofida burish, yoki bu doirani o`z diametriga nisbatan simmetrik almashtirish uni o`z-o`ziga o`tkazadi. Tekislikda iltalgan aylanani inversiya aylanasi sifatida olib, unga orthogonal aylanani inversion almashtirilganda aylana o`z-o`ziga almashadi. Ya`ni doirani aylana ajratgan qismlar o`rinlarini almashtiradi. Umuman olganda doira o`zida qolar ekan.

II. Buning o`rinli ekanligi 5-masaladan ko`rinadi.


Yüklə 279 Kb.

Dostları ilə paylaş:
1   ...   4   5   6   7   8   9   10   11   12




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin