Hosila va diffеrеnsial. Hosila tushunchasiga olib keladigan masalalar Reja



Yüklə 248,06 Kb.
səhifə2/12
tarix20.02.2023
ölçüsü248,06 Kb.
#85045
1   2   3   4   5   6   7   8   9   ...   12
1. Harakatdagi nuqta tezligini topish haqidagi masala

Ta’rif. Agar x0 da nisbatning limiti mavjud va chekli bo‘lsa, bu limit f(x) funksiyaning x0 nuqtadagi hosilasi deyiladi va f’(x0), yoki y’(x0), yoki orqali, ba’zan esa yoki kabi belgilanadi.
Bu holda funksiya x0 nuqtada hosilaga ega deb ham aytiladi. Demak,
.
Bunda x0+x=x deb olaylik. U holda x=x-x0 va x0 bo‘lib, natijada
bo‘ladi. Demak, f(x) funksiyaning x0 nuqtadagi hosilasi xx0 da nisbatning limiti sifatida ham ta’riflanishi mumkin:
Yuqoridagi limit mavjud bo‘lgan har bir x0 ga aniq bitta son mos keladi, demak f’(x) - bu yangi funksiya bo‘lib, u yuqoridagi limit mavjud bo‘lgan barcha x nuqtalarda aniqlangan. Bu funksiya f(x) funksiyaning hosila funksiyasi, odatda, hosilasi deb yuritiladi.
Endi hosila ta’rifidan foydalanib, y=f(x) funksiya hosilasini topishning quyidagi algoritmini berish mumkin:
10. Argumentning tayinlangan x qiymatiga mos funksiyaning qiymati f(x) ni topish.
20. Argument x ga f(x) funksiyaning aniqlanish sohasidan chiqib ketmaydigan x orttirma berib f(x+x) ni topish.
30. Funksiyaning f(x)=f(x+x)-f(x) orttirmasini hisoblash.
40. nisbatni tuzish.
50. nisbatning x0 dagi limitini hisoblash.
Misollar. 1. y=kx+b funksiyaning hosilasini toping.
Yechish. Hosila topish algoritmidan foydalanamiz.
10. Argument x ni tayinlab, funksiya qiymatini hisoblaymiz: f(x)=kx+b.
20. Argumentga x orttirma beramiz, u holda f(x+x)=k(x+x)+b=kx+kx+b.
30. Funksiya orttirmasi f(x)=f(x+x)-f(x)=(kx+kx+b)-( kx+b)=kx.
40. = , 50. = k=k.
Demak, (kx+b)’=k ekan. Xususan, y=b o‘zgarmas funksiya (bu holda k=0) uchun (b)’=0; y=x (k=1) funksiya uchun x’=1 bo‘ladi.

Yüklə 248,06 Kb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   ...   12




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin