Hosila va uning tatbiqlari. Maqsad


Asosiy elementar funksiyalarning hosilalar jadvali



Yüklə 0,51 Mb.
səhifə7/10
tarix25.04.2023
ölçüsü0,51 Mb.
#102227
1   2   3   4   5   6   7   8   9   10
Hosila va uning tatbiqlari. Maqsad(1)

Asosiy elementar funksiyalarning hosilalar jadvali:
1.
2. xususan
3. xususan
4. xususan
5. 6.
7. 8.
9. 10.
11. 12.
13. 14.
15. 16.
Keltirilgan diferensiallash qoidalari va asosiy elementar funksiyalarning hosilalar jadvali bir o‘zgaruvchi funksiyasi differensial hisobining asosini tashkil qiladi, ya’ni ularni bilgan holda qiyinchilik darajasi qanday bo‘lishidan qat’iy nazar har qanday elementar funksiyaning hosilasini topish mumkin. Bunda yana elementar funksiya hosil bo‘ladi. Shunday qilib, differensiallash jarayonida
elementar funksiyalar sinfidan tashqariga chiqilmaydi.
Misol. funksiyaning hosilasini topamiz:


Hosilani topishda differensiallashning 1,2 qoidalari va 3,4,9 formulalaridan
foydalanildi.
4.1.5. Logarifmik differensiallash
Ayrim hollarda funksiyaning hosilasini topish uchun avval berilgan funksiyani logarifmlash, so‘ngra differensiallash maqsadga muvofiq bo‘ladi. Bu jarayonga logarifmik differensiallash deyiladi.

Murakkab funksiyani hosilasi
va bo‘lsin. U holda funksiya erkli argumenti
dan va oraliq argumenti dan iborat murakkab funksiya bo‘ladi.
2-teorema. Agar funksiya nuqtada hosilaga ega bo‘lsa va funksiya mos nuqtada hosilaga ega bo‘lsa, u holda murakkab funksiya nuqtada differensiallanuvchi va

bo‘ladi.
Isboti. funksiya nuqtada differensiallanuvchi bo‘lgani uchun
bo‘ladi. Bundan .
funksiya nuqtada hosilaga ega. Shu sababli funksiya
nuqtada uzluksiz va da .
U holda

Bundan yoki
.
Shunday qilib, , ya’ni murakkab funksiyaning hosilasi berilgan funksiyaning oraliq argument bo‘yicha hosilasi bilan oraliq argumentning erkli argument bo‘yicha hosilasining ko‘paytmasiga teng.
Bu qoida oraliq argumentlar bir nechta bo‘lganda ham o‘z kuchida qoladi.
Masalan, bo‘lsa, bo‘ladi.



Yüklə 0,51 Mb.

Dostları ilə paylaş:
1   2   3   4   5   6   7   8   9   10




Verilənlər bazası müəlliflik hüququ ilə müdafiə olunur ©azkurs.org 2024
rəhbərliyinə müraciət

gir | qeydiyyatdan keç
    Ana səhifə


yükləyin