14-rasm 15-rasm
Aylanma harakat qilayotgan jism nuqtasining tezlanishi.
М nuqtaning tezlanishini formulalar yordamida aniqlaymiz. deb olib, tezlikning (37) tenglikdagi qiymatini yuqoridagi tengliklarga qo'yib, quyidagilarni hosil qilamiz.
yoki
(38)
Urinma tezlanish nuqtaning traektoriyasiga urinma bo’ylab yo’nalgan bo’ladi (tezlanuvchan aylanma harakatda nuqtaning harakat yo’nalishi bilan, sekinlanuvchan aylanma harakatda esa unga teskari yo’nalgan bo’ladi); normal tezlanish doimo МС radius bo’ylab aylanish o’qi tomon yo’nalgan bo’ladi (15-rasm).
М nuqtaning to’liq tezlanishi va yo’nalishi quyidagi ifodalar yordamida aniqlanadi.
(39)
(40)
Aylanma harakat qilayotgan qattiq jism nuqtasining tezlik va tezlanish vektori.
М nuqtani АВ aylanish o’qida yotgan О nuqta bilan tutashtirib radius- vektorini o’tkazamiz 16- rasmdan quyidagini yozamiz.
tenglikni (37) ga qo'yamiz.
yoki
vektorning moduli М nuqtaning tezligi moduliga teng vektor bilan vektorning yo’nalishi ustma – ust tushadi, demak
(41)
Aylanma harakat qilayotgan jismning istalgan nuqtasining tezlik vektori jismning burchak tezligi bilan shu nuqta radius–vektorining vektorial ko’paytmasiga teng. (41) formulaga Eyler formulasi deyiladi.
(41) tenglikning har ikkala tomonidan vaqt bo’yicha hosila olamiz.
yoki
(42)
(42) tenglama aylanma harakat qilayotgan jism ixtiyoriy nuqtasining tezlanish vektorini aniqlash formulasi. (42) tenglikning o'ng tomonidagi birinchi qavs urinma tezlanish, ikkinchi qavs esa normal tezlanish ekanligini e‘tiborga olsak quyidagini hosil qilamiz:
Dostları ilə paylaş: |